Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 2 years
    Please wait a minute...
    Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics
    ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun
    Journal of Textile Research    2022, 43 (07): 1-8.   DOI: 10.13475/j.fzxb.20220307508
    Abstract861)   HTML78)    PDF(pc) (17185KB)(612)       Save

    Based on ionic liquid/co-solvent system with excellent dissolving capability for cellulose and relatively low viscosity, a method for rapid component separation and content determination for waste cotton/polyester blended fabrics was proposed. The effect of ionic liquid and co-solvent on the dissolving capability, solution viscosity, structure and properties of separated components was studied. The results indicate that the 1-butyl-3-methylimidazolium acetate/dimethyl sulfoxide (the mass ratio is 1:1) system can selectively dissolve cellulose in the cotton/polyester blended fabrics, and the resultant cellulose solution has a low viscosity. Subsequently, after a simple filtration, cellulose and polyester fibers can be completely separated under simple and mild conditions, with the separation temperature to be 25-60 ℃. The cellulose component is almost non-degradable, and can be processed into film, fibers and microspheres. The polyester component with a high purity can also be separated and keep its original textile morphology in blended fabrics. In summary, the ionic liquid/co-solvent method not only can high-efficiently separate the components of the cotton/polyester blended fabrics, but also can accurately measure the components content. Therefore, this work provides a promising and useful method to the recycling and re-utilization of waste textiles, indicating a great potential in the practical applications.

    Table and Figures | Reference | Related Articles | Metrics
    Fabrication and application research progress of fiber-based self-powered electronic skins
    LÜ Xiaoshuang, LIU Liping, YU Jianyong, DING Bin, LI Zhaoling
    Journal of Textile Research    2022, 43 (10): 183-191.   DOI: 10.13475/j.fzxb.20220404509
    Abstract892)   HTML129)    PDF(pc) (8552KB)(544)       Save

    This review introduces the categories, characteristics, and preparation processes for constructing materials with applications for electronic skins, from the perspective of composition structure of the electronic skins with tactile sensing capability. The compelling features of breathable fiber materials serving as substrate layer, electrode layer, and sensing layer in electronic skins were highlighted, in view of the poor air permeability of current dense film-based and rubber-based electronic skins that easily lead to itching during long-term wearing. The working mechanisms of piezoelectric and triboelectric electronic skins were introduced, which are not only able to achieve real-time pressure sensing response, but also able to harvest the ambient mechanical energy and convert it into electricity to power themselves. These are conducive to the fabrication of miniatured, lightweight, and flexible wearable devices. The research progresses in fiber-based self-powered electronic skins in the fields of motion monitoring and medical detection were comprehensively summarized in terms of preparation methods, performance characterizations, and practical applications. The existing challenges and future development directions of fiber-based self-powered electronic skins were extensively discussed.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation of binary thermochromic microcapsules and application in smart textiles
    WANG Chengcheng, GONG Xiaodan, WANG Zhen, MA Qunwang, ZHANG Liping, FU Shaohai
    Journal of Textile Research    2022, 43 (05): 38-42.   DOI: 10.13475/j.fzxb.20211108105
    Abstract468)   HTML35)    PDF(pc) (5062KB)(445)       Save

    Aiming at large temperature range and serious hysteresis of the temperature-response microcapsules, a fast response binary thermochromic complex was prepared by mixing fluorane dye with amide group and hexadecanol uniformly. The apparent morphology of the highly sensitive thermochromic microcapsules were studied by scanning electron microscope, transmission electron microscope and thermogravimetric analyzer. Color changing smart textiles were developed with strong temperature sensitivity, and the morphology characteristics of smart textiles and color performance were studied. The results show that the size of the prepared highly sensitive thermosensitive color-changing microcapsules is 1 μm, and the core material load was about 65%, with satisfactory thermal stability. The prepared smart textiles with high sensitivity and temperature change have bright color, and the color change range is 40-42 ℃. The color change lag of heating and cooling process is less than 1 ℃ and the color change sensitivity is high.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation of dendritic nanofiber membrane induced by hyperbranched quaternary ammonium salt and its properties
    YAO Ying, ZHAO Weitao, ZHANG Desuo, LIN Hong, CHEN Yuyue, WEI Hong
    Journal of Textile Research    2022, 43 (10): 1-9.   DOI: 10.13475/j.fzxb.20211202809
    Abstract517)   HTML96)    PDF(pc) (3337KB)(424)       Save

    In order to develop membrane materials with high efficiency filtration performance, this research prepared polyvinylidene fluoride (PVDF) dendritic nanofiber membranes using hyperbranched quaternary ammonium salt (HBP-HTC) as a branching promoter based on electrostatic spinning technology in one step. The influence of the spinning process on the forming structure of the fiber membrane was explored. The mechanical properties of the dendritic nanofiber membrane were analyzed and its air filtration performance was measured. The results showed that the nanofiber membrane prepared with HBP-HTC has more dendritic structures than the membrance prepared with small molecule quaternary ammonium salts due to the abundant quaternary ammonium groups on the surface of HBP-HTC, which has a stable enrichment effect on charge. When the mass fraction of PVDF was 12%, the quaternary ammonium groups was 0.1 mol/L, and the spinning voltage was 25 kV, the dendritic coverage of the fabricated fiber membranes was as high as 78.32% and demonstrated good mechanical properties. The filtration efficiency of the prepared nanofiber membrane reached 99.995% at the thickness of 40 μm, while the pressure drop is 122.4 Pa.

    Table and Figures | Reference | Related Articles | Metrics
    Research status and development trend of perspective preparation technologies and applications for textiles
    WU Jing, JIANG Zhenlin, JI Peng, XIE Ruimin, CHEN Ye, CHEN Xiangling, WANG Huaping
    Journal of Textile Research    2023, 44 (01): 1-10.   DOI: 10.13475/j.fzxb.20220706210
    Abstract564)   HTML84)    PDF(pc) (5040KB)(408)       Save

    Significance Chemical fiber is a necessary component of human productivity and daily living. Since the 1970s, China's chemical fiber industry has developed quickly, and China has led the world in production of chemical fiber for almost 20 years. In 2021, China's chemical fiber output has reached 60.25 million tons, or more than 70% of the total amount produced worldwide. Currently, the development of high performance, functional, and intelligent textile products has drawn considerable attention as consumer demand has increased significantly. The production of raw resources, technological advancement, and the application fields of functional products are all significant variables. The future development of the textile industry is undoubtedly very important, and in order to be clear about the future development direction, it is thus crucial to summarize the possible and potential development trend of novel technologies and improved products with higher performance and wider application fields in future textile industry on the basis of the existing technologies and problems.
    Progress Currently, significant obstacles still exist to the growth of the textile sector, which are mostly seen in the following four aspects: 1) shortage of resources for fiber raw materials; 2) increase of processing costs; 3) products elevation. Middle and low-grade products no longer have any advantages, the production and processing capability is forced to migrate out of China, and new and high-grade products are being developed and produced; 4) absence of innovative technology. The developed synthetic biological method and genetic engineering technology can successfully prepare bio-based raw materials like 1, 3-propanediol and lactic acid in order to avoid the significant consumption of petroleum-based raw materials and the competition between bio-based raw materials and grain. Fiber material forming technology is moving progressively in the direction of an effective multi-flow, sustainable, green, and intelligent technology introduction. Furthermore, the fiber forming technology is more advanced to achieve the accurate building of multiple fiber structures. A greater range of applications can be met by the expansion and performance improvement of fiber structures. Application of clothing in the direction of development for high performance, minimal loss, light weight, and multifunctional clothing. Additionally, textiles have new uses in the development of biomedical materials, environmental protection filtration materials, and agricultural production materials. The innovation products are multi-functional and more intelligent, and can realize the active adaptation of structure and performance in varied application conditions.
    Conclusion and Prospect The development of textile industry and textile technology has played a crucial role in the evolution of human civilization. Today in the 21st century, the textile industry is no longer just a conventional industry to meet the needs of human clothing. Its technological development is more advanced and cutting-edge: 1) the innovation of raw materials. Innovations in feedstock technology such as the development of bio-based feedstocks have made fiber products more environmentally friendly. Pure organic polymers are no longer the only type of fibrous matrix materials; in addition, inorganic, metal, and organic-inorganic hybrid fiber materials are now covered. 2) forming technology. Fiber material forming technology is gradually moving toward an effective multi-flow, environmentally friendly, and sustainable processing process. Infinite creative potential exists for final applications thanks to the advancement of fiber forming technology and the evolution of fiber on a multidimensional scale. 3) intelligent manufacturing. The adoption of intelligent manufacturing, complete process automation, information technology, and digitalization can significantly increase the productivity of the textile sector. 4) more diverse applications. In the future, textiles could be used in apparel, wearable textiles, household textile items, and extremely innovative fields including biomedicine, the environment, energy, agricultural production, building, and transportation, among others, with the focus on intelligence and function. The textile sector has demonstrated multifaceted inventive growth that will open up more room for human civilization and technology advancement.

    Table and Figures | Reference | Related Articles | Metrics
    Review of new dyeing technologies for reactive dyes and disperse dyes
    WU Wei, JI Bolin, MAO Zhiping
    Journal of Textile Research    2023, 44 (05): 1-12.   DOI: 10.13475/j.fzxb.20230200802
    Abstract371)   HTML78)    PDF(pc) (4337KB)(399)       Save

    Significance Although dyeing is an important technique to give color to textiles, it also depletes resources and creates a lot of pollution. Reactive and disperse dyes are the most widely used dyes for coloring cellulose and polyester fibers, respectively. The output of two dyes accounts for more than 70% of the total output of dyes. However, reactive dyeing has problems with insufficient dye utilization, excessive use of inorganic salts, and high wastewater discharge. Meanwhile, the reduction cleaning step in the disperse dyeing process uses a lot of water and energy. The dispersants and unfixed dyes which are washed off in the reduction cleaning step will cause more difficulty in treating wastewater. Therefore, innovative dyeing techniques of two dyes that can solve these problems were reviewed in this paper.

    Progress In order to reduce the usage amount of inorganic salts in reactive dyeing technology, researchers developed a series of methods to increase the affinity of dyes and fibers, such as cationic modifications and designing macromolecular dyes. In order to improve the utilization of dyes, the wet pickup of the fabric was controlled at a low level to reduce the hydrolysis of reactive dyes. The low wet pickup dyeing technologies are foam dyeing, vacuum-dewatering aided pad-steam dyeing, spray dyeing and ″moisture fixation″ dyeing. Organic solvent (ethanol, decamethylcyclopentasiloxane, silicone oil) /water mixed solvent, liquid ammonia, and organic mixed solvent (dimethyl sulfoxide/dimethyl carbonate) were used as dyeing media to reduce the wastewater discharge. In order to solve the problem of low dyeing efficiency and high material consumption of rope dyeing, open-width dyeing technology for the cotton knitted fabric was developed. For disperse dyeing techniques, the first advancement is the development of alkali-resistant disperse dyes, which were created to solve the problem of water and energy usage during the reduction cleaning process. Owing to the same alkaline conditions, the pre-treatment and soap-washing procedures can also be combined with alkaline dyeing technology to increase production effectiveness. Secondly, the polymer dispersants with low molecular weights, no matter the synthesized copolymer anions or modified biomass polymers, were designed to make the dyes maintain nanoscales in water by grinding. Thus, the nano-scale liquid disperse dyes were prepared to improve the dyeing uptake and reduce loose color. With the use of microcapsule shells, the non-reduction clearing effect is achieved through the adhesion on the surface of the fabrics. Finally, non-aqueous media such as supercritical carbon dioxide fluid or organic solvents (decamethylcyclopentasiloxane, liquid paraffin) are used for dyeing to save water consumption.

    Conclusion and Prospect To sum up, the development of the two dyeing technologies focused on reducing the use of chemicals and wastewater emission, improving the utilization rate of dyes, and improving the efficiency of dyeing production. The use of reactive dyes with little or no salt has the problem of poor dyeing levelness or color fastness. For the wet pickup dyeing technology, the main direction of future research is to control the uniformity of dyeing and improve the color fixation rate to the highest level. The directions that need to be explored include the adaptability of open-width dyeing technology for knitted cotton textiles to thin fabric and the enhancement of process stability. Alkaline dyeing, nano liquid disperse dyeing and non-reduction clearing dyeing technologies have basically reached the industrial level, but it is still necessary to improve the categories of dyeable fabrics and improve the dyeing quality. It still needs to keep developing the theoretical framework and supporting equipment for less-water or non-aqueous dyeing technologies, whether they use reactive or disperse dyeing systems. In the future, reactive and disperse dyeing technologies continue to advance in a green and consumption-reduction direction, which will encourage the textile dyeing and printing industry to achieve the ″carbon dioxide emissions peak and carbon neutrality″ target as soon as feasible.

    Table and Figures | Reference | Related Articles | Metrics
    Review on thermal-drawn multimaterial fiber optoelectronics
    ZHANG Jing, HUANG Zhiheng, NIU Guangliang, LIANG Sheng, YANG Lüyun, WEI Lei, ZHOU Shifeng, HOU Chong, TAO Guangming
    Journal of Textile Research    2023, 44 (01): 11-20.   DOI: 10.13475/j.fzxb.20220606310
    Abstract485)   HTML49)    PDF(pc) (8985KB)(389)       Save

    Significance With the rapid development of textile engineering and material science, intelligent fibers and related fabrics have become the preferred carriers for wearable electronics with their advantages in softness, lightness, and breathability. A variety of fiber manufacturing technologies has been developed, enabling conventional fibers with new capabilities such as environmental/physical/chemical sensing, logical computing, human-machine interaction, and so on. Among these manufacturing techniques, the thermal drawing process can be adopted to fabricate multimaterial optoelectronic fibers, providing an innovative research for intelligent fibers and fabrics. By enriching fiber structures, materials and post-treatment techniques, thermal-drawn fibers can be integrated with multiple functions such as multi-parameter sensing, temperature regulation, and information interaction, broadening the application scenarios of fibers.
    Progress Thermal-drawn multimaterial optoelectronic fibers are generally drawn from fiber preforms with a fiber drawing tower. The external forms, internal structures, and materials of fiber preforms can all be designed with great flexibility according to the applications and functions. The diameters of fibers are typically in the micron range, and the structures of the fibers are consistent with the preform rods. In addition, fiber post-treatment techniques, such as thermal treatment and cold-drawing process, can further enrich and modify the structures, giving more ways to improve the functionalities of fibers.
    With these advanced fiber drawing and processing technologies, micro- and nano-structured fibers can be achieved. For example, a low-loss CO2 laser-propagated photonic bandgap fiber has been achieved with a hollow core surrounded by a solid multilayer structure of high refractive-index contrast. The fiber has a large photonic bandgap and omnidirectional reflectivity. Nanowires, structural micro- and nanospheres, nanorods, and porous fibers have also been produced in a scalable way by the in-fiber fluid instability phenomena, cold-drawing deformation, and salt leaching techniques. Moreover, surface micro-nano imprinting technology has been utilized to construct specific fibers with micro/nano-surface patterns.
    The richness of structures and materials gives fibers a variety of advanced functionalities, such as sensing, energy management, neural probing, and information interaction. For sensing, the thermal-drawn fibers have been achieved with acoustic, photoelectric, strain, and chemical sensing. For energy management, fiber-based devices are enabled with the functions of passive temperature regulation and energy generation/storage. Thermal-drawn fibers have also been widely used as neural probes because of their flexibility, small size, and conductive property. In addition, semiconductor diodes and integrated circuits have been integrated into thermal-drawn fibers successfully, which empowers the fibers with the abilities of logical computing and information interaction.
    Conclusion and Prospect This work focuses on the research progress and application fields of thermal-drawn multimaterial fiber, reviews the regulation of the micro/nanostructures inside the fibers by thermal drawing, and discusses their applications in sensing, energy, biology and others with recent studies.
    However, there are still some limitations to thermal-drawn multimaterial fiber optoelectronics. 1) Only a few of materials and structures are investigated and applied into the system. 2) The mechanical properties and comfort of wearing of thermal-drawn fibers need to be improved. 3) It is still difficult to integrate multiple functions into one fiber. 4) The abilities of logical calculation and data management of the thermal-drawn fibers should be enhanced.
    The future research trends of thermal-drawn multimaterial optoelectronic fibers are discussed from five aspects: more material selection, complex fiber structure, textile processing, multi-function integration, and artificial intelligence. It is foreseen that current mono-functional thermal-drawn multimaterial optoelectronic fibers can be improved for higher integrations, better mechanical properties, and more intelligence. These advanced fibers can also be combined with conventional textiles to enable their functionalities, comfort of wearing, and applicability to scenarios.

    Table and Figures | Reference | Related Articles | Metrics
    Advancement in data-driven intelligent control system for roboticized textile production
    ZHANG Jie, XU Chuqiao, WANG Junliang, ZHENG Xiaohu
    Journal of Textile Research    2022, 43 (09): 1-10.   DOI: 10.13475/j.fzxb.20220506610
    Abstract654)   HTML90)    PDF(pc) (6898KB)(381)       Save

    The scale of China's textile industry is huge with long production process, and the industry employs large number of workers, and full-process automated production is still difficult to achieve. The construction of a data-driven intelligent control system for roboticized textile production would play an important role in promoting the transformation and upgrading of China's textile industry from labor-intensive to less-personnel or unmanned production. This paper systematically reviewed the development history of textile robot and intelligent manufacturing system, and proposed a data-driven intelligent control system architecture for roboticized textile production. From the equipment layer, data layer and application layer, this paper discussed three key technologies and applications: multi-type textile robots to fill in the process breakpoints, multi-chain integrated digital thread of textile entire process, and multi-application collaborative intelligent control of textile production. Furthermore, the challenges in practical applications were summarized. The review concluded that high-speed, real-time, dexterity, precision, autonomous and collaborative textile robots, and intelligent management and control systems for textile production with interpretability, sustainability and toughness are possible future development directions.

    Table and Figures | Reference | Related Articles | Metrics
    Review in functional textiles for personal thermal and moisture comfort management
    CHENG Ningbo, MIAO Dongyang, WANG Xianfeng, WANG Zhaohui, DING Bin, YU Jianyong
    Journal of Textile Research    2022, 43 (10): 200-208.   DOI: 10.13475/j.fzxb.20210401609
    Abstract560)   HTML49)    PDF(pc) (1609KB)(355)       Save

    With the aim of achieving improved individual comfort and reduce energy consumption in providing cooling and heating, textiles regulating heat and moisture exchange between human body and its surroundings are a promising solution. This paper reviews the researches on functional textiles for heat and moisture management. The review started with the introduction of personal heat and moisture comfort management mechanisms, followed by summarizing six common advanced functional textiles that can be used for personal heat and moisture management, these being the radiative thermoregulation textiles, phase change thermoregulation textiles, smart response textiles, thermal conductive textiles, thermoregulation textiles for energy conversion, and moisture management textiles. The research progress in functional textiles was summarized on the basis of different heat and moisture management mechanisms and their potential applications in several fields, taking that fabric regulation of microclimate between body and ambient heat and moisture balance is the key to individual comfort. The review pointed out that the current advanced functional textiles for heat and moisture management still have problems such as difficulties in scale preparation, functional singleness, lack of intelligence and absence of systemic heat and moisture comfort evaluation, and it is foreseen that advanced textiles for personal heat management, energy harvesting technology and integration of flexible electronic devices are the future development trend of smart clothing.

    Table and Figures | Reference | Related Articles | Metrics
    Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel
    YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian
    Journal of Textile Research    2023, 44 (09): 1-10.   DOI: 10.13475/j.fzxb.20220408901
    Abstract376)   HTML110)    PDF(pc) (26590KB)(352)       Save

    Objective Silk fibroin (SF) aerogels prepared by conventional regeneration-dissolution process generally suffer from poor mechanical elasticity, resulting in weak oil absorption performance of the hydrophobically modified SF aerogels. This research aims to prepare highly elastic SF-based aerogels with excellent oil absorption properties for practical applications by using SF micro-nanofibrils (SMNF) aerogels as carriers, following the hydrophobic modification.

    Method The SMNF aerogels were fabricated by a freeze-induced assembly process using low-melting solvent liquid-phase exfoliated SMNF as precursors. Subsequently, the SMNF aerogel was hydrophobically modified by a methyltrimethoxysilane (MTMS) chemical vapor deposition strategy. The microstructure, element distribution and mechanical properties of MTMS modified SMNF (MS) aerogel were characterized by scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and universal material testing machine. Meanwhile, the oil absorbency of MS aerogel was systematically studied.

    Results The urea/guanidine hydrochloride deep eutectic solvent liquid-phase exfoliated SMNF retained the micro-nanoscale fibril structures of natural silk fibers (Fig.1), facilitating the construction of highly elastic SF aerogels. The resulting MS aerogel was characterized by hierarchical cellular architectures (Fig. 2), which endowed it with low density (5.36 mg/cm3) and high porosity (99.63%). The MS aerogel exhibited high compressi-bility (15.72 kPa at a strain of 80%) and superior fatigue resilience (over 81% relative height retention after 100 cycles) (Fig. 4). The results of energy dispersive spectroscopy and infrared spectroscopy confirmed that the siloxane network structures were formed on the aerogel surface after MTMS modification (Fig. 3), endowing SMNF aerogel with superhydrophobicity (water contact angle of 150.9°) (Fig. 5). Consequently, MS aerogels demonstrated strong absorption capacity for various oil agents with the oil absorption capacity of 84.48-188.75 g/g (Fig. 7). More importantly, owing to the high elasticity and stable skeleton structure, MS aerogel displayed excellent repeatable oil absorption performance (Fig. 8, Fig. 9).

    Conclusion Highly elastic and superhydrophobic MS aerogels were fabricated by urea/guanidine hydrochloride low eutectic solvent liquid phase exfoliation, freeze-induced assembly, and MTMS chemical vapor deposition modification. The assembled MS aerogels were characterized by hierarchical fibril networks and hierarchical cellular structures, which endowed MS aerogels with exceptional properties, including low density, high porosity and superelastic performance. Benefiting from the above features, the superelastic and superhydrophobic MS aerogel not only showed strong absorb ability to various oil agents, but also had excellent repeated oil absorption performance. This work provides a reliable approach for the fabrication of highly elastic and superhydrophobic SF aerogels and endows application prospects in oil absorption opportunities.

    Table and Figures | Reference | Related Articles | Metrics
    Progress and trends in application of wearable technology for emotion recognition
    LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin
    Journal of Textile Research    2022, 43 (08): 197-205.   DOI: 10.13475/j.fzxb.20210107509
    Abstract541)   HTML39)    PDF(pc) (2657KB)(346)       Save

    In order to promote the innovative development of smart wearable product technology for emotion recognition in the textile and apparel field, this paper systematically introduced the current research status of emotion recognition monitoring, classification algorithms and emotion recognition wearable devices. The emotion classification model was outlined and the physiological reactions summarized that occur when emotions were generated. In view of the current research status of emotion recognition monitoring methods, two categories of emotion recognition monitoring methods, namely physiological signals and behavioural manifestations, were elaborated, and the common emotion recognition classification algorithms and the existing emotion recognition wearable products based on the wearable device parts were summarized. The review also discussed the challenges and problems that need to be addressed in future development of emotion recognition smart wearable. The review identified future development trend and application prospects from three aspects: flexible and comfortable collection devices, accuracy of recognition results, and the way to interact with recognition results.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress of aramid nanofiber aerogels
    LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong
    Journal of Textile Research    2023, 44 (06): 10-20.   DOI: 10.13475/j.fzxb.20230101602
    Abstract0)   HTML0)    PDF(pc) (16435KB)(342)       Save

    Significance Aerogels are synthetic solid nanomaterials formed by the replacement of liquid in a gel with gas. The continuous network structure renders aerogels with extraordinary properties, including ultralow density, super-high porosity, high specific surface area, low thermal conductivity, low optical refractive index and low dielectric constant. They have demonstrated tremendous potentials for various applications, such as thermal insulation, environmental protection and separation. However, in the development process of aerogels, there are still questions to be answered on development of new sol-gel transition principles and strategies, effectively control of macro morphology of aerogels, improvement of service performance, and expansion of the application field. As newly emerging aerogels, aramid aerogels utilized aramid nanofibers as building blocks have the potential to provide answers to the above-mentioned questions. In order to accelerate the development of aramid nanofiber aerogels from laboratory investigation to practical application and thus promote the development of the entire aerogel industry, the research status of aramid nanofiber aerogels are comprehensively reviewed in this paper.
    Progress The building blocks of aramid nanofiber aerogels need to be obtained. So far, various methods have been developed to prepare aramid nanofibers, which can be classified into "top-down" and "bottom-up" methods. The rheological behavior of aramid nanofiber dispersion shows significant shear thinning behavior. In addition, the dynamic stress scanning test reveals that the aramid nanofiber dispersion shows elastic behavior in a certain stress range. These distinguishing features indicate that the aramid nanofiber dispersion can be processed through wet spinning, blade coating, 3D printing, and so on. Therefore, aramid aerogel fibers have been prepared via wet spinning or relevant spinning method, such as liquid crystal spinning. During the fabrication process, novel dynamic sol-gel transition principles was proposed. The as-prepared aramid aerogel fibers were shown to possess nano-porous network structure and inherit excellent physical and chemical properties of aramid materials, demonstrating ultra-low thermal conductivity and excellent mechanical properties. Besides, the aramid aerogel fibers were further functionalized to render them with unique functions, such as hydrophobicity, absorbability, and electric conductivity. These aramid aerogel fibers demonstrated wide potential applications in the textile field, which can be woven into thermal insulation fabrics and smart thermal regulation fabrics. In terms of aramid aerogel films, the fabrication process includes blade/spin coating, sol-gel transition, and special drying process. The typical aerogel structure was found to bring about aramid aerogel films with high specific surface area and low thermal conductivity. The post-processing and functionalization were shown to further improve their mechanical properties and electric conductivity. These aramid aerogel films have demonstrated great application prospects in separation and filtration, electromagnetic shielding, infrared stealth, thermal management, and so on. In addition, direct-ink-writing 3D printing and microgel-directed suspended 3D printing strategies were developed to fabricate 3D aramid aerogels. These printing technologies enable aramid aerogels with arbitrary shape realized. Thus, the mechanical or thermal insulation performances can be customized through simple structural design.
    Conclusion and Prospect In view of the current urgent demand for high-performance aerogel materials, the research on aramid nanofiber aerogels will remain a research focus. By analyzing the research situation about the preparation, performance and application of aramid aerogel fibers, aramid aerogel films and 3D printed aramid aerogels, it can be confirmed that the development stage of aramid nanofiber aerogels is still in the initial exploration stage. On the one hand, the preparation technology of aramid nanofiber aerogel is not yet mature, and it needs to integrate deeply with traditional fiber, film or 3D printing technologies. There are many key points that need to be improved urgently, such as continuous solvent replacement, drying and other processes. The ultimate performances of aramid nanofiber aerogels have not been reached, and there is still room for improvement in mechanical properties. Therefore, it is necessary to further research on aramid nanofiber aerogels, optimize their preparation technologies, improve their performances, and reduce their production costs, so as to widen applications in thermal management, intelligent protection, separation, filtration and other fields.

    Table and Figures | Reference | Related Articles | Metrics
    Rapid preparation and properties of structural colored calcium alginate fibers triggered by magnetic field
    YANG Chunli, ZHOU Weixian, LIANG Jinglong, LIN Guizhen, LIU Jie, NI Yanpeng, LIU Yun, SHANG Shenglong, ZHU Ping
    Journal of Textile Research    2022, 43 (09): 64-69.   DOI: 10.13475/j.fzxb.20210800506
    Abstract208)   HTML18)    PDF(pc) (16529KB)(320)       Save

    To prepare structural colored calcium alginate fibers with high color saturation and satisfactory mechanical properties, magnetic particles were prepared by solvothermal method before dispersing them in the polyethylene glycol diacrylate. A structural color coating was constructed on the surface of calcium alginate fibers by self-assembly of magnetic particles, and factors affecting the color rendering and mechanical properties of the fiber were analyzed. The results show that when the diameters of the magnetic particle are 125, 145 and 190 nm, blue, green and red structural colors were obtained after curing on the surface of calcium alginate fibers, respectively. The coatings of magnetic particles structure color can better achieved on calcium alginate fiber, and the main component is cubic Fe3O4. The mechanical properties of the structural colored calcium alginate fibers have been significantly improved, and the breaking strength has been increased from 78 cN to 158, 162 and 169 cN, respectively, along with the improved elongation at break.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in fabric defect detection based on deep learning
    WANG Bin, LI Min, LEI Chenglin, HE Ruhan
    Journal of Textile Research    2023, 44 (01): 219-227.   DOI: 10.13475/j.fzxb.20211105509
    Abstract463)   HTML40)    PDF(pc) (3568KB)(316)       Save

    Significance With the development of science and technology, the improvement of product quality is highly demanded. Although the technologies used in producing textile products have undergone revolutionary advancement which contributes to the textile quality dramatically, defects in textile products such as fabrics remain to be a reality. Fabric defect detection plays an important role in textile industry, and fabric defect detection technology based on deep learning has been paid more and more attention. This paper reports a research and development progress in fabric defect detection based on deep learning.
    Progress Deep learning is mainly composed of four steps, i.e., defining model and loss function, training the model, finding optimization method and loop iteration. The research focus for fabric defect detection method based on deep learning mainly includes deep learning models such as convolution neural network (CNN) and automatic encoder (AE). The stack denoising automatic encoder based on Fisher criterion introduces deep learning into this field for the first time, which provides a new idea for the application of deep learning to the field of defect detection. Convolution neural network has achieved good results in the field of image recognition because of its strong nonlinear fitting ability. More precision-based detection algorithms based on candidate regions and more speed-based algorithms based on regression analysis are present. While the advantages of convolution neural network is exploited, other methods are used for exploring the possibility of combined use of models, and provide new ways for defect detection.
    Conclusion and Prospect Fabric defect detection methods based on deep learning in recent years are reviewed and summarized, and the effects of different models are compared in detail. Advantages, disadvantages and applicable scope of each model are analyzed, and future development of fabric defect detection method based on deep learning model is prospected. Deep learning models can improve the detection efficiency, but still have some deficiencies. In order to optimize the accuracy of fabric image defect detection, breakthrough should be made from the following aspects in the future. 1) High quality data sets should be established. 2) Specific evaluation criteria need to be established. 3) The applicability should be extended. A single detection method often has limitations, but when different defect detection methods are utilized to deal with different detection needs, the detection results are often different, therefore hybrid methods would have better applicability.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (06): 215-215.  
    Abstract138)      PDF(pc) (50732KB)(305)       Save
    Related Articles | Metrics
    Preparation and properties of phosphorus-silicon modified flame retardant and anti-dripping polyester fiber
    REN Jiawei, ZHANG Shengming, JI Peng, WANG Chaosheng, WANG Huaping
    Journal of Textile Research    2023, 44 (02): 1-10.   DOI: 10.13475/j.fzxb.20220809410
    Abstract376)   HTML55)    PDF(pc) (7219KB)(304)       Save

    Objective Polyester fibers are flammable with a large number of molten droplets and smoke emission when burning. This research aims to improve the flame retardant properties of polyester fibers through the addition of phosphorus and silicon flame retardants, and to prepare polyester fibers with better flame retardant properties for fire safety in end uses.
    Method The phosphorus-silicon flame retardant masterbatch was prepared by blending diethyl hypophosphite flame retardant, macromolecular silicone and polyester. Then, the phosphorus-silicon flame retardant masterbatch was added to the polyester according to an optimized mass fraction, and the flame retardant and anti-dripping polyester fiber was produced by melt spinning. The mechanical properties, thermal properties and flame retardant properties of the flame retardant polyester were characterized and analyzed by using scanning electron microscope, compound filament strength meter, differential scanning calorimeter, thermogravimetric analyzer, ultimate oxygen index meter and Raman spectroscopy.
    Results The diethyl hypophosphite flame retardant selected in this work is found to be able to dehydrate the polyester surface into char, and the macromolecular silicone enhances the graphitization of the char layer, forms an orderly and stable char layer, enhances the flame retardant polyester flame retardant properties and inhibits the formation of molten droplets. Accordingly, the amount of smoke formed by combustion decreases, and the morphology of the char layer of the samples after combustion is shown in Fig. 5, and the results of the char layer structure stability study were shown in Fig. 6. It is discovered that macromolecular silicone mainly plays a role in the cohesive phase flame retardant process when polyester burns, forming a synergistic effect with phosphorus-containing flame retardant, generating an effective physical barrier, impeding the transfer of combustible gases, oxygen and heat, and inhibiting the occurrence of combustion reactions. The flame retardant polyester fiber spun by adding 3% diethyl hypophosphite flame retardant and 0.77% macromolecular silicone, the test results for the flame retardant properties of the modified samples are showed that the limiting oxygen index reached more than 31%, the vertical combustion test grade reached V-0 level, inhibiting the formation of molten droplets of polyester fiber during combustion, hence reducing the risk of secondary combustion brought about by the molten droplet phenome-non(Tab. 7).
    Conclusion The flame retardant synergistic effect between phosphorus and silicon elements improved the spinnability of the flame retardant polyester fiber, and the modified polyester fiber has good flame retardant and anti-dripping properties. This work proved that the phosphorus-silicon element synergy is helpful to improve the flame retardant properties of polyester fibers, and provides ideas for the subsequent preparation of flame retardant polyester fibers by using different structural flame retardants from the viewpoint of conformational relationship and processing performance.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (07): 219-219.  
    Abstract143)      PDF(pc) (48483KB)(302)       Save
    Related Articles | Metrics
    Research progress in display units fabricated from textiles
    SHI Xiang, WANG Zhen, PENG Huisheng
    Journal of Textile Research    2023, 44 (01): 21-29.   DOI: 10.13475/j.fzxb.20220606609
    Abstract325)   HTML41)    PDF(pc) (15066KB)(302)       Save

    Significance As the window of human-machine interaction, demands on displays have become an important driving force for the development of the information society. The development of display technology ranges from the early three-dimensional bulky cathode ray tube display to flat-panel liquid crystal display, and now to the two-dimensional thin-film organic light-emitting diode display, and the displays are becoming flexible and lightweight by reducing the thickness of the device. With the rapid development of emerging fields such as wearable devices, smart interactions and the Internet of Things, displays are required to fit the irregular surface of the human body, match the human body in mechanical properties and remain stable under three-dimensional deformation. Additionally, future displays should be permeable for long-term comfort in the applications of human-machine interaction and health monitoring. Textile is an indispensable part of our daily life, and integrating displays into textile is an ideal way to realize new displays that is highly flexible, adaptive to complex deformation, and permeable.
    Progress Light-emitting devices are the basic components of displays. Dynamic images in displays are realized by controlling light-emitting devices according to the driving program. Until now, three types of textile light-emitting device structures have been developed. They are textile-based planar light-emitting devices, light-emitting fibers, and warp-weft interwoven light-emitting devices.
    Textile-based planar light-emitting devices are prepared by attaching flexible thin-film light-emitting devices to the textile substrate or depositing active materials layer by layer on the textile substrate to obtain light-emitting devices. Owing to the wide investigation on materials and fabrication of planar light-emitting devices, it is easy to achieve high luminance and efficiency in textile-based planar light-emitting devices for better display performance. However, the modulus of film materials is always higher than the modulus of textiles. The mismatch between the mechanical properties leads to reduced flexibility of the textile, and the devices can the easily peeled off from the textile or fade in performance during deformation.
    The two-dimensional thin film light-emitting devices are converted into one-dimensional light-emitting fibers, which are the building blocks of textiles. Light-emitting fibers can be woven into textiles without sacrificing the inherent permeability and flexibility of textiles. Through the design of material and device structure, meter-length light-emitting fibers were realized based on AC electroluminescent material. Light-emitting fibers with good mechanical stability and flexibility can be woven into textile to display pre-designed weaving patterns. However, this is a significant limitation because simply based on pre-designed patterns, it is almost impossible for them to satisfy the display applications like computers and cell phones.
    For real displays consisting of an array of pixels, the pixels are individually controlled in real time for dynamic change. A strategy is proposed to build micron-scale light-emitting devices at the warp and weft interwoven points. Composite warps that load luminescent materials and transparent conductive wefts were developed, and the textile pixels were formed by contacting two fibers during weaving. This method unifies the textile and the display device in function, structure, and fabrication method. High-resolution display in the textile was achieved by applying digital signals to warps and wefts.
    Conclusion and Prospect In the past decade, many efforts are made to design materials, device structures, and fabricate methods for displaying textiles. High stability, flexibility, and permeability of displaying textiles are achieved by developing one-dimensional fiber devices, and pixel displays with high resolution and large-area integration are facilitated by developing warp-weft interwoven devices. However, the following problems remain to be solved to promote the practical application of displaying textile.
    1) Luminescent materials are the basis for high display performance. Unique highly curved structures of fibers lead to new requirements for the composition, structure, film forming method and mechanical stability of light-emitting materials.
    2) Full-color display is indispensable for human-machine interaction. In planar display, full color is realized by mixing the light emitting from three adjacent light-emitting devices in red, green, and blue. Fiber-shaped light-emitting devices are curved light sources. The space distribution of emitted light from fiber devices is different from that from planar devices, which demands new principles of color mixing.
    3) Resolution is a key parameter for display quality. The resolution of displaying textiles is still far below that of the commercial displays. It is challenging to uniformly load the luminescent materials on superfine fiber and reveal the light-emitting mechanism of interwoven light-emitting devices in the size of tens of microns.
    4) Systematic integration is the foundation of practical application. In order to integrate displaying textiles with other fiber devices such as battery fibers and sensing fibers, problems should be solved to connect fiber electrodes in high bonding strength and stable electrical conductivity under deformation. Matching of electrical parameters among textile devices should also be investigated for the reliable operation of the textile system.

    Table and Figures | Reference | Related Articles | Metrics
    Application progress of fiber materials in flexible wearable zinc batteries
    WANG Jin, HU Kairui, ZHANG Liufei, CHEN Lei
    Journal of Textile Research    2022, 43 (10): 192-199.   DOI: 10.13475/j.fzxb.20210608108
    Abstract302)   HTML29)    PDF(pc) (1200KB)(297)       Save

    In order to promote the application of zinc ion batteries with high safety and low cost in flexible energy storage devices, the paper takes fiber-based zinc ion batteries as the object and firstly clarifies the mechanism of zinc anode oxidation and transition metal oxide or oxygen positive cathode reduction in the process of charge and discharge proccess. Secondly, fibers such as carbon fiber, carbon nanofiber, carbon nanotube yarn, metal fiber and other inorganic fiber in the cathode, anode and electrolyte of flexible zinc battery are reviewed. The effects of different preparation processes, microstructure and modification strategies on the electrochemical characteristics of fiber-based flexible batteries are analyzed and compared, and the main parameters affecting its performance are defined. At last, it is proposed that the structural ordered design of fibers has a significant effect on improving the electrochemical performance of batteries, and the broad development prospect of natural fiber based electrode materials is emphasized. This paper has a positive significance for accelerating the industrial application of intelligent clothing and helping to realize the vision of "carbon peak and carbon neutralization" as soon as possible.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (10): 216-216.  
    Abstract175)      PDF(pc) (18682KB)(286)       Save
    Related Articles | Metrics
    Structural design and application of wet-laid nonwovens for separating membrane support
    SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin
    Journal of Textile Research    2022, 43 (06): 15-21.   DOI: 10.13475/j.fzxb.20220101407
    Abstract237)   HTML19)    PDF(pc) (29484KB)(284)       Save

    Fabric supports play an important role of the membrane forming, and have an significant influence on the structure and performance of the membrane. In order to obtain a support with the required structure, asymmetric structured wet-laid nonwoven fabrics containing dense and smooth layer and high-mechanical layer was prepared by using wet-laid process and hot-pressing technology for the systematic investigation on the influence of fiber composition on the structure and properties. The results show that the addition of ultra-fine fibers improves surface smoothness, reduces pore size, and improves the processability of the separation membrane. When the porosity and structural parameters of the support were increased, and the porous structure of polysulfone membranes was accordingly regulated by influencing the phase separation forming process of the separation membrane, with the finger-like pores gradually shorten to circular sponge-like cavity structure. The permeance and bovine serum albumi rejection of the polysulfone membranes were also improved, indicating a new research idea for the separation membrane supports.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in high efficiency and low resistance air filter materials
    YANG Jizhen, LIU Qiangfei, HE Ruidong, WU Shaohua, HE Hongwei, NING Xin, ZHOU Rong, DONG Xianglin, QI Guishan
    Journal of Textile Research    2022, 43 (10): 209-215.   DOI: 10.13475/j.fzxb.20210305007
    Abstract331)   HTML22)    PDF(pc) (1188KB)(282)       Save

    In order to develop high efficiency and low resistance air filtration materials, solve the imbalance between filtration efficiency and filtration resistance in the current research, and further improve the quality factor for filtration materials, this paper reviews the relevant research on nanofiber membrane, melt-blown filtration materials and high-temperature resistant needle filter mat in recent years.The research status of electret filtration materials, micro-nano structure filtration materials, gradient structuring and finishing methods to improve the filtration efficiency of materials are reviewed.The influencing factors of charge storage capacity of materials are analyzed and discussed. The preparation methods of micro-nano structure materials are summarized. The advantages and disadvantages of gradient structuring and finishing methods for improving filtration efficiency were compared. It is concluded that the electret and micro-nano structured filtration materials will draw great attention from researchers because of their great potentials in the future field of air purification.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (05): 203-203.  
    Abstract138)      PDF(pc) (10836KB)(280)       Save
    Related Articles | Metrics
    Journal of Textile Research    2022, 43 (07): 220-220.  
    Abstract431)      PDF(pc) (53694KB)(278)       Save
    Related Articles | Metrics
    Progress in recycling waste natural fiber textiles and high-value utilization strategy
    FAN Wei, LIU Hongxia, LU Linlin, DOU Hao, SUN Yanli
    Journal of Textile Research    2022, 43 (05): 49-56.   DOI: 10.13475/j.fzxb.20220103408
    Abstract512)   HTML31)    PDF(pc) (3009KB)(273)       Save

    In order to improve the recycling rate of waste natural fiber textiles and reduce environmental pollution and resource waste, the current recycling technologies of waste natural fiber textiles were reviewed from four perspectives,i.e. physical method, chemical method, biological method and energy method. The research progress and suitable types and grades of waste textiles for each method were analyzed. In view of the complex components of waste textiles, unclear structure-activity relationship, high recycling cost, low added value and poor consumer acceptance of recycling products, this review proposes to emphasize breakthroughs in sorting and identification technology of waste textiles, structure-activity relationship, low-cost recycling technology, high-value recycling strategy, policies and regulations on the promotion and use of recycling products in future studies, in order to promote the industrialization pace of waste natural fiber textiles.

    Reference | Related Articles | Metrics
    Current status and prospect of intelligent development in textile industry
    ZHENG Xiaohu, LIU Zhenghao, CHEN Feng, ZHANG Jie, WANG Junliang
    Journal of Textile Research    2023, 44 (08): 205-216.   DOI: 10.13475/j.fzxb.20220305802
    Abstract280)   HTML49)    PDF(pc) (8758KB)(273)       Save

    Significance With the start of a new round of technological revolution and industrial advancement, China's textile industry has stepped into a new stage of high-quality development. This paper provides a comprehensive overview of the development and application of artificial intelligence technology in the textile industry and explores the tasks and goals of future intelligent development. Based on the latest global developments in digitalization, networking, and intelligence in the textile industry, it analysed the current technical challenges and summarised the key technologies urgently needed in the textile industry. Typical application cases and production models were introduced such as whole-process intelligent textile production lines, intelligent operation and maintenance of textile equipment, and intelligent textile testing. The core technological challenges facing the Chinese textile industry and the development directions of the industrial ecology were to be reviewed. Ideas on developing a new generation of textile-intelligent manufacturing systems and creating an intelligent textile ecology with the collaboration of the whole industrial chain were presented.

    Progress At this stage, the Chinese textile industry intelligent manufacturing is in a critical period of digital, networked, and intelligent development (Fig. 1). The critical technologies related to the intelligence of the textile industry are developing rapidly, and big-data technology for the whole textile production process is being applied rapidly (Fig. 2). Digital-twin technology in the textile industry is applied to intelligent garment design and intelligent textile factories (Fig. 3 and Fig. 4). As automated equipment replaces manual labor in typical textile processes, robots in the textile industry have become an essential part of intelligent production. Machine vision technology based on deep learning plays a role in the intelligent control of textile equipment and intelligent inspection of textile quality scenarios (Fig. 5). Intelligent scheduling technology based on machine learning effectively improves the production efficiency of textile enterprises. Based on these technologies, typical examples of intelligent applications in the textile industry have emerged. A data-driven intelligent operation and maintenance system for high-speed winders (Fig. 6), enables data-based intelligent fault diagnosis and remaining life prediction of equipment. The "edge-cloud" collaborative fabric defect detection system enables the detection and identification of a wide range of fabric defects. Xinfengming Group realizes the intelligence of the whole production chain based on 5G and product identification resolution technology (Fig. 7). Wuhan Yudahua's 100000-spindle full-process intelligent spinning line solves the discontinuity problem between some of the ring spinning processes, with an automation rate of over 95% (Fig. 8).

    Conclusion and Prospect China's textile industry has made a breakthrough in digitalizing equipment, networking, and workshop intelligence. Significant progress has been made in improving quality and efficiency and optimizing the industrial structure. However, a series of standards system for intelligent manufacturing in the textile industry has yet to be established. In the field of cotton spinning, for example, there are still breakpoints in the automated production of the whole process. The quality traceability of the whole process of product production needs to be strengthened. Data processing and other software are primarily selected from general software developed by information technology developers, which is challenging to meet the precise professional needs of spinning enterprises. The core equipment and industrial software in the field of textiles have not yet formed the technical support capacity, from the true meaning of "intelligent" still has a large gap. The intelligent textile ecology of the whole industrial chain needs to be established. Developing a new generation of intelligent textile manufacturing systems should be based on the study of intelligent textile process, intelligent textile equipment as the focus of development, and intelligent equipment collaboration as the core. At the same time, through the construction of a textile innovative factory demonstration production model, the development of critical technologies of the textile industry Internet, the construction of a blockchain-based networked collaborative rapid response service system, the creation of the whole industry chain collaborative textile intelligent ecology, improve the rapid response service capacity, to achieve the development of the textile industry multi-cluster synergy.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation and properties of poly(butylene succinate)/silk sericin blend fiber
    XIA Yu, YAO Juming, ZHOU Jie, MAO Menghui, ZHANG Yumei, YAO Yongbo
    Journal of Textile Research    2023, 44 (04): 1-7.   DOI: 10.13475/j.fzxb.20211111107
    Abstract295)   HTML806)    PDF(pc) (4552KB)(270)       Save

    Objective Poly (butylene succinate) (PBS) is a synthetic biodegradable polymer and silk sericin is a natural biodegradable polymer. PBS fiber can be prepared by melt spinning process, which is applied in textile industry as raw material. Silk sericin can be used as moisturizer in skincare and textile industries. To improve the skin-friendliness of PBS fiber, PBS and silk sericin was mixed by melt blending, then the blend fiber was prepared by melt spinning process.
    Method After vacuum drying at 80 ℃ for 4 h, the PBS and silk sericin were melt blended using an internal mixer at the rotation rate of 60 r/min for 25 min. The mixing temperature of the PBS/silk sericin blends was set to 140 ℃, and the weight ratio of PBS/silk sericin is shown in Tab. 1. After that, the PBS/silk sericin blend fibers were spun through a single-screw extruder at 160 ℃. Then, the fiber was cooled in a water bath at room temperature. The extrusion speed was 1.95 g/min, the drawing speed was 3.60 m/min, and the draw ratio was 4.
    Results The scanning electron microscopy (SEM) of the cross-section of the PBS/silk sericin blend fiber is shown in Fig. 1. The rough cross-section of PBS/silk sericin blend fiber indicates poor compatibility between PBS and silk sericin. There were small voids on the cross-section of the blend fibers, the number of voids would increase with the rise of silk sericin mass fraction. The XRD pattern of PBS/silk sericin blend fiber is shown in Fig. 3 and the crystallinity of PBS is listed in Tab. 2. With the increase of silk sericin mass fraction, the crystallinity of the blend fiber decreases. It seems that the crystallization process of PBS was obstructed by the dispersion of silk sericin in the fiber. The mechanical property of PBS/silk sericin blend fiber is shown in Fig. 4. Tensile strength and elongation at break of the blend fiber decrease when the silk sericin mass fraction increases, and the elongation at break of PBS fiber is 212.1%. However, for the blend fiber when the mass fraction of silk sericin became 15%, the elongation at break of was only 8.9%, this value meets the requirement of textile requirement. Hence, the overlarge elongation at break of PBS fiber can be reduced with the existence of silk sericin. The saturated moisture regains of the PBS/silk sericin blend fibers is shown in Fig. 6. It can be found that the saturated moisture regain of the blend fiber is improved with the increase of silk sericin mass fraction. For the blend fiber when the silk sericin mass fraction is 15%, the saturated moisture regain is 3.90%. This value is similar to the saturated moisture regain of polyamide 6 fiber (saturated moisture regain is 3.95%) with good hydrophilic property. The improved saturated moisture regain of the blend fiber is not only related to the hydrophilic group of silk sericin, but also associated with the increase of amorphous region area in the blend fiber. The weight loss rate of PBS/silk sericin blend fibers after soil burial test is shown in Fig. 7. The weight loss rate of the blend fiber after 6 weeks during the soil burial test is up to 53.6%. When silk sericin is degraded by microorganisms firstly, the specific surface area increases, which is beneficial to the contact between PBS and microorganisms. Then, the degradation rate of PBS is also accelerated.
    Conclusion In this research, the PBS/silk sericin blend fibers were prepared by melt spinning method. The effect of PBS/silk sericin weight ratio on the morphology, mechanical strength and biodegradability was studied. The main findings are as follows,the small voids can be found on the cross-section of the PBS/silk sericin blend fibers, which is related to the weak interface force between PBS and silk sericin. For the PBS/silk sericin blend fiber when the mass fraction of silk sericin is 15%, the elongation at break is 8.9%, the saturated moisture regain is 3.90%. By contrast, the elongation at break of PBS fiber is 212.1%, the saturated moisture regain is 2.26%. The existence of silk sericin not only reduces the overlarge elongation at break of PBS fiber, but also improves the hydrophilic property. For the PBS/silk sericin blend fiber when the mass fraction of silk sericin is 15%, the weight loss rate after 6 weeks during the soil burial test is up to 53.6%. The biodegradability of PBS/silk sericin blend fiber of PBS is better than that of PBS fiber. Hence, the PBS/silk sericin blend fiber degrades quickly after use.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (09): 218-218.  
    Abstract181)      PDF(pc) (13926KB)(269)       Save
    Related Articles | Metrics
    Research progress in aerogel materials application for textiles
    ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling
    Journal of Textile Research    2022, 43 (12): 181-189.   DOI: 10.13475/j.fzxb.20210501210
    Abstract462)   HTML33)    PDF(pc) (9108KB)(254)       Save

    In order to clarify the definition of aerogel and explore its application value in textiles, the evolution of the definition and the domestic and international research status of aerogel-based textiles were reviewed and summarized. The preparation processes of three main application methods of aerogel in textiles, i.e., gel integral molding method, thermal bonding method and coating method, as well as their advantages and disadvantages were analyzed in detail. Focusing on the four application forms of aerogel-based textiles, including thermal protection textiles, warm and cold-proof textiles, super-hydrophobic textiles and noise and sound insulation textiles, this paper expounded the action mechanism of aerogel and pointed out the problems currently in these application forms. Finally, the review concluded that enhancing mechanical properties, optimizing material compatibility, reducing preparation cost and promoting intelligent transformation would be the significant development directions of aerogel materials for the textile field in the future.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (06): 216-216.  
    Abstract143)      PDF(pc) (23678KB)(254)       Save
    Related Articles | Metrics
    Preparation of polyamide 6-based elastic fibers and its structure and properties
    YANG Hanbin, ZHANG Shengming, WU Yuhao, WANG Chaosheng, WANG Huaping, JI Peng, YANG Jianping, ZHANG Tijian
    Journal of Textile Research    2023, 44 (03): 1-10.   DOI: 10.13475/j.fzxb.20211005610
    Abstract399)   HTML290)    PDF(pc) (3498KB)(253)       Save

    Objective The binary acid method can be used for preparing polyamide 6 (PA6) based elastomer easily and efficiently, but stoichiometric number balance is strictly required when feeding. Once the molecular mass of the soft and hard segments is determined, the proportion of the soft and hard segments cannot be changed, which limits the development of functional products.The paper is to propose a new polymerization method based on the binary acid method to flexibly adjust the relative molecular weight and proportion of the soft and hard segments of PA6-based elastomers and to provide the basis for the subsequent research of PA6-based elastomers.

    Method On the basis of the binary acid method, ethylene glycol is introduced to participate in the esterification and ester exchange reaction between polyamide 6 and polyether segments. With the ethylene glycol component, the system can ensure the balance of stoichiometry and adjust the ratio of soft and hard segments more flexibly to obtain the PA6-based elastomer. All reactions for preparing the PA6-based elastomer were performed in a 10 L reactor with a vacuum pump, a vacuum tube, and a nitrogen cyllinder.

    Results It can be seen from the infrared spectra of the polymer that there are ester bonds in the product, indicating that ethylene glycol and polyethylene glycol were introduced into the system in the form of copolymerization (Fig.3). The structure of PA6 based elastomer (Fig.4), and combined with the peak (Fig.5), six bonding structures of PA6-based elastomer were made known. The relative integral area of the peak was introduced into equations (5) and (6), and it was proved that the molecular mass and PEG segment content were consistent with the design. The contents of low molecular extractants in PA6 based elastomer (Tab.4). The low content of low molecular extractants was conducive to the subsequent melt spinning of PA6-based elastomer. When the molecular weight of the soft and hard segments was given, the crystallization enthalpy and melting enthalpy of PEG segments would increase with the increase of the content of PEG segments, and the crystallization enthalpy and melting enthalpy of PA6 segments would decrease accordingly (Fig.7). With the same content of soft and hard segments, when the molecular mass ratio of hard segment to soft segment (Mn,PA6/Mn,PEG) increases, the melting and crystallization temperatures of PA6 and PEG segments would increase (Fig.8). It can be seen that the smaller the PEG content, the greater Mn,PA6/Mn,PEG, the higher the thermal stability of the resulting elastomer (Tab.5). It can be seen that the characteristic peaks of PA6 based elastomers were consistent with those of PA6, indicating that the crystal structure of this series of PA6-based elastomers was solely determined by PA6 chain segments(Fig.9). It can be seen that the elasticity of PA6 based elastic fibers increases with the increase of the PEG segment content, while the fracture strength and fracture elongation of fibers decrease sharply (Fig.10). It is evident that with the decrease of PEG segment content and the increase of Mn,PA6/Mn,PEG, the main chain structure of PA6 based elastic fiber is similar to that of pure PA6, and the fracture strength and elongation of the fiber increase (Tab.6).

    Conclusion After the introduction of ethylene glycol, a series of PA6-based elastomers were prepared by changing the molecular weight and feeding ratio of polyethylene glycol (PEG) to PA6, making PA6-based elastomers more designable. The molecular structure design of a series of PA6-based elastomers was verified to be effective through the analysis of 1H-NMR and infrared spectra. The thermodynamic properties, the crystal structure, the fiber mechanical properties and the elastic properties of the series of PA6-based elastomer samples were tested and analyzed. The results show that the crystal structure of PA6-based elastomer is dominated by PA6 segments. With the increase of the PEG segment content, the elastic recovery of fiber increased, and the strength and elongation of fiber decreased. Compared with PA6 fibers, elastic fibers with above 20% PEG content shows higher resilience at high constant elongation (≥10%), the elastic recovery rate are increased by up to 17.5%. PA6-based elastic fiber is found to possess encouraging comprehensive properties, among which the strength is 1.57 cN/dtex, the elongation is 106.89%, and the elastic recovery at 10% constant elongation is 94.3%.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in chemical recycling of waste cotton and polyester textiles
    CHEN Long, ZHOU Zhe, ZHANG Jun, XU Shimei, NI Yanpeng
    Journal of Textile Research    2022, 43 (05): 43-48.   DOI: 10.13475/j.fzxb.20211201806
    Abstract742)   HTML43)    PDF(pc) (2480KB)(251)       Save

    A large number of waste cotton and polyester textiles are produced in China, but the recycling rate is low and high quality products are rare. Focusing on this problem, the recycling of waste cotton and polyester fabrics based on chemical recycling was reviewed. The technology of waste cotton pulp preparation and its fiber spinning, the monomer preparation from the depolymerization of waste polyester and its polymerization were examined. The literature review indicated that the small-scale production of waste cotton was involved in the making of regenerated Lyocell fibers by mixing low proportion of waste cotton regenerated pulp with the primary wood pulp, and that 10 000-ton scale production of chemically regenerated polyethylene terephthalate(PET) from waste PET textiles has been achieved through glycol alcoholysis-methanol ester exchange technology. However, there are still problems such as technical difficulties, high production cost, low recovery and utilization rate, poor product quality, and high degree of " waste production caused by waste treatment ". Hence, key technology development for waste textile recycling should be the focus of research emphasizing on clean recycling and high value utilization of waste cotton and polyester textiles.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions
    ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin
    Journal of Textile Research    2022, 43 (08): 40-47.   DOI: 10.13475/j.fzxb.20210608708
    Abstract286)   HTML31)    PDF(pc) (2910KB)(246)       Save

    In order to endow poly(lactic acid)( PLA ) fiber with high anti-ultraviolet and antibacterial properties, PLA/ZnO blends with different mass ratios were prepared via melt blending method applying ZnO as functional particles. According to the morphology, thermal properties, anti-ultraviolet and antibacterial properties of the blends, the optimal mass ratio of the blend was chosen which was further fabricated into PLA/ZnO fiber through melt spinning. When the mass fraction of ZnO masterbatch was 5% with the mass fraction of ZnO being 0.85%, ZnO particles were uniformly distributed in the PLA matrix. The PLA/ZnO blend exhibited good thermal stability, excellent anti\|ultraviolet and antibacterial properties. The ultraviolet protection coefficient reached 663, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was more than 99%. Moreover, the PLA/ZnO blend fiber showed good spinnability with crystallinity reaching more than 30% and the fiber strength meeting the weaving requirements. The ultraviolet transmittance of the prepared PLA/ZnO fabric is less than 30%, and its antibacterial rate against Escherichia coli and Staphylococcus aureus is as high as 99%, which can also be maintained after 10 washes.

    Table and Figures | Reference | Related Articles | Metrics
    Application of virtual garment transfer in garment customization
    YE Qinwen, WANG Zhaohui, HUANG Rong, LIU Huanhuan, WAN Sibang
    Journal of Textile Research    2023, 44 (06): 183-190.   DOI: 10.13475/j.fzxb.20220408001
    Abstract177)   HTML17)    PDF(pc) (7818KB)(242)       Save

    Objective Design-preserving virtual garment transfer can transfer a garment from one body to another, which is significant for garment customization. However, most current research on virtual garment transfer only focuses on generating personalized 3-D garments rather than 2-D patterns and cannot be used for 3-D scanned human bodies. To address this issue, we propose a garment customization solution for 3-D scans based on design-preserving virtual garment transfer. Given a source garment worn on a source body, this research aims to obtain the target garments and patterns for a 3-D scan and show the final virtual fitting result of the target garment.
    Method Firstly, the principle of virtual garment transfer of CLO 3-D and Marvelous Designer software is clarified in detail. Secondly, a method for generating personalized 3D garments and 2-D patterns for the 3-D scanned human bodies is proposed in combination with virtual garment transfer and the "Auto-convert-to-avatar" of CLO 3-D. Finally, the feasibility of this method in actual garment customization is verified by performing virtual garment transfer experiments with scanned human bodies.
    Results In order to explore the difference in results between the two virtual garment transfer methods, two experiments were conducted and the results demonstrated that the method of using the default virtual avatar in CLO 3D or Marvelous Designer worked better than "Create fitting suit" when performing virtual garment transfer (Fig. 4). For the 3-D scanned human body, we proposed a personalized garment customization solution (Fig. 6). The virtual garment transfer for the 3-D scan was divided into three main steps. First, we used the CLO 3D default avatar to fit the scan and obtained the converted avatar based on the "Auto-convert-to-avatar " function of CLO 3D. Second, we obtained the transferred garment by transforming the source garment from the source body to the converted avatar. Finally, we fitted the transferred garment onto the scan and obtained the final virtual fitting effect. To verify the effectiveness of our proposed personalized garment customization solution, we scanned four young males with 3-D scanning and then obtained the corresponding converted avatars. For convenience, we denoted the scans as SA, SB, SC, SD and the converted avatars as CA, CB, CC, CD, respectively. According to our solution, we quickly obtained the transferred 3-D garment and corresponding 2-D patterns. The experimental results showed that the garments obtained by virtual garment transfer could meet the personalized requirements for different body shapes and sizes of the 3-D scanned human body (Fig. 10). In addition, the transferred patterns can satisfy the needs of actual garment production (Fig. 11).
    Conclusion In this paper, we have proposed a personalized garment customization solution for a 3-D scanned human body based on design-preserving virtual garment transfer. For the 3-D scanned human body, our method was available for generating personalized 3-D garments and the corresponding 2-D patterns while also showing the final wearing effect of the transferred garment on the scan. The scheme's feasibility for actual garment customization was verified by conducting virtual garment transfer experiments with 3-D scans. The transferred 3-D garments can fit the scans well, and the transferred 2-D pattern can satisfy the needs of actual garment production. The method described in this paper was quick and effective for creating personalized 3-D garments and 2-D patterns. As a result, it can significantly improve the efficiency of customized garment development and facilitate garment customization in the apparel industry. In practical applications, creating a new style of 3-D garment is only necessary. Our proposed method allows personalized 3-D garments and corresponding 2-D patterns to be quickly obtained for 3-D scanned bodies of different sizes and shapes. In future work, how to optimize the existing personalized garment customization solutions is a topic worthy of in-depth study.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2023, 44 (02): 238-238.  
    Abstract126)      PDF(pc) (47226KB)(240)       Save
    Related Articles | Metrics
    Review on toughening modification of carbon fiber/epoxy resin composites
    XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan
    Journal of Textile Research    2022, 43 (09): 203-210.   DOI: 10.13475/j.fzxb.20210104508
    Abstract524)   HTML23)    PDF(pc) (6858KB)(233)       Save

    The brittle fracture of carbon fiber/epoxy resin composites can be improved by resin toughening and fiber modification. This paper reviewed the research progress of carbon fiber reinforced epoxy resin composites from three aspects: resin modification, interface modification and structure design. The toughness of epoxy resin was improved by increasing the bonding between filled particles and resin by modifying nano materials, rubber elastomer and thermoplastic resin. The interfacial modification was mainly the surface modification of carbon fiber. By increasing the surface active functional groups of carbon fiber or enhancing the surface modification at multiple scales, the interfacial bond between carbon fiber and epoxy resin is enhanced to toughen the composites. The structural design of composite materials was focused on the design of the fiber laying angle, thickness and structure, in order to enhance the toughness of composite materials through structural optimization. Finally, the problems of the three modification methods were analyzed, and the future research directions of composite modification were pointed out based on the combination of the three modification methods.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in key technologies of spun yarn warp knitting production
    JIANG Gaoming, CHENG Bilian, WAN Ailan, LI Bingxian
    Journal of Textile Research    2022, 43 (05): 7-11.   DOI: 10.13475/j.fzxb.20211206706
    Abstract411)   HTML49)    PDF(pc) (5446KB)(231)       Save

    In view of the problems of low strength, high hairiness, small elongation, high twist and high cost in warp knitting production using spun fiber yarns, the warping technology, high-speed production technology, clean production technology, intelligent production and fully formed warp knitting production technology in the production of spun yarn warp knitting were summarized in this paper. By summarizing the yarn quality requirements of spun yarn for warp knitting, including yarn breaking strength, surface hairiness and elongation properties, the problems and solutions of spun yarn warp knitting technology were further analyzed. Through introducing the application status and production situation of spun yarn warp knitted products in the fields of shirt fabrics, underwear fabrics, trousers and lace fabrics, the future development direction of spun yarn warp knitted technology was prospected, pointing out that the production technology of spun yarn warp knitting is gradually going towards specialization, high quality and functionality.

    Table and Figures | Reference | Related Articles | Metrics
    Advances on antibacterial textiles
    NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang
    Journal of Textile Research    2022, 43 (06): 197-205.   DOI: 10.13475/j.fzxb.20210401509
    Abstract515)   HTML42)    PDF(pc) (3958KB)(227)       Save

    In order to solve problems that bacterial resistance of antimicrobial agents, the short duration of antimicrobial activity and the complexity of antibacterial finishing process, the properties of fabrics, the functional characteristics, textile applications and antimicrobial mechanism of organic, inorganic and natural antimicrobial agents were systematically reviewed. At the same time, the advantages and disadvantages of different antibacterial finishing methods, such as impregnation, dip rolling and microencapsulation, were introduced and compared through the various antibacterial finishing treatments for functional yarns and fabrics with different antibacterial agents. Finally, it is predicted that multi-function agents and eco-friendly antibacterial finishing technologies will be developed in the future, so that antibacterial functional textiles can be developed in the direction of eco-friendly processing, low development costs, effective performance and comfortable wearing.

    Table and Figures | Reference | Related Articles | Metrics
    Effect of Lyocell fiber structure on its fibrillation at high speed spinning process
    LI Ting, LI Wenrui, ZHANG Chenxi, CHI Kedong, ZHANG Mingming, LIU Haihui, HUANG Qing
    Journal of Textile Research    2023, 44 (02): 11-18.   DOI: 10.13475/j.fzxb.20211001008
    Abstract284)   HTML38)    PDF(pc) (4344KB)(225)       Save

    Objective The research on the relationship between the condensed structure and the degree of fibrillation of Lyocell fiber at a higher spinning speed is relatively scarce. Selecting appropriate preparation conditions to change the condensed structure of fiber and regulate the degree of fibrillation can ease the main problems that restrict the industrial promotion and scale applications of Lyocell fiber. This research studied the influence of different preparation conditions on the condensed structure of Lyocell fiber and the degree of fibrillation, further established the relationship, which was then used to control the degree of fibrillation at high spinning speed.
    Method In order to explore the relationship between the condensed structure and the degree of fibrillation of Lyocell fiber at high spinning speed, the fibers were spun with different N-methylmorpholine-N-oxide (NMMO) mass fractions, spinning speeds and blowing speeds. The degree of fibrillation was regulated by adjusting the structure. Using X-ray diffraction, wet friction tester and polarized microscope, the effects of NMMO concentration, spinning speed and blowing speed on the condensed structure and the degree of fibrillation were explored.
    Results The condensed structure and fibrillation behavior of the fibers prepared under different conditions are obviously different. Increasing the concentration of the NMMO to a certain extent optimizes the fiber structure, leading to significant increase in the degree of orientation and transverse crystallite size as shown in Tab. 1, and in the degree of fibrillation of the fiber as illustrated in Fig. 2-3. The fiber with low crystal orientation and small crystal size has better antigen fibrillation properties. The coagulation bath with lower NMMO mass fraction is more suitable to prepare low fibrillation Lyocell fiber at high spinning speed. As the spinning speed increases, the crystallinity and the grain size of the fiber increases slightly as suggested in Tab. 2. However, the amorphous region is further oriented and the degree of fibrillation also increases(Fig. 4 and 5). To a certain extent, reducing the spinning speed can reduce the fibrillation of the fiber. Adjusting the air blowing speed has a significant impact on the structure of fiber as shown in Fig. 6, especially on the transverse grain size as shown in Tab. 3, which can control the degree of fibrillation as Fig. 7 reveals. In a certain range, the lower the blowing speed, the less the crystal orientation and the smaller the grain size, the more conducive to reducing the fiber fibrillation. Too low the blowing speed affects the forming of the fiber and the spinning stability.
    Conclusion The condensed structure of Lyocell fiber directly affects the degree of fibrillation. The antigen fibrillation properties of the fiber prepared at high spinning speed is better in having low crystallization, low orientation and small crystallite size. To a certain extent, reducing the concentration of NMMO, spinning speed and blowing speed can reduce the degree of fibrillation. By comprehensively changing the degree of orienta-tion (especially the orientation of amorphous region) and the transverse grain size, the regulation of fibrillation is more obvious. Adjusting the concentration of NMMO is an easier way, among the above factors, to control the fibrillation behavior at high spinning speed. The Lyocell fiber prepared under mild spinning conditions demonstrates better antigenic fibrillation properties.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in smart fabrics for thermal and humidity management
    CHEN Jiahui, MEI Tao, ZHAO Qinghua, YOU Haining, WANG Wenwen, WANG Dong
    Journal of Textile Research    2023, 44 (01): 30-37.   DOI: 10.13475/j.fzxb.20220705708
    Abstract402)   HTML33)    PDF(pc) (6025KB)(224)       Save

    Significance With rapid development of today's social population and the increasing scarcity of fossil energy, a huge contradiction arose between the surge in energy consumption, e.g., from air conditioning, and the global goals of "carbon peaking" and "carbon neutrality". The large amount of greenhouse gas emissions caused by air-conditioning, refrigeration and heating have also become an urgent problem to be solved. Therefore, it is necessary to seek a new method for effectively adjusting the thermal and moist comfort of the human body so as to reduce the energy consumption caused by air conditioning. Textiles can also play a role in managing human comfort in daily life, but would mainly rely on the thickness of clothing to regulate human body temperature. In order to better meet the modern day requirements for life comfort, the active adjustment of smart textiles has demonstrated the potential for adjusting the human body's thermal and moist comfort, thereby reducing the energy consumption in the process of cooling and heating by air conditioning. Under the premise of the "double carbon" goal, this has could be a promising solution.
    Progress This review summarizes the research progress in adjusting the thermal and moist comfort of the human body by using smart fabrics. The principle of regulating the thermal and moist condition of the human body through the fabric is introduced. In addition, the researches and mechanisms of the current study on regulating the thermal and moist comfort of the human body by means of fabric materials or fabric structures have been summarized. Coating or combining high-performance materials was adopted to prepare thermal and moist comfort fabrics aiming to regulating human body temperature. High infrared reflection materials such as silver and titanium dioxide, high thermal conductivity materials such as boron nitride nanosheets (BNNSs), and high infrared transmission materials such as polyethylene (PE) are proposed. All of these high-performance materials can be used for raising or decreasing the body temperature. The review also introduces the thermal and moist comfort adjustment of smart fabrics caused by different fibers and fabric structures, such as thermal fabrics made of porous fibers, moisture-absorbing and quick-drying fabrics caused by asymmetric structures, and intelligent adjustment fabric that can respond to changes in fabric pore size caused by external temperature and humidity. Finally, this review paper analyzed and discussed the current difficulties and challenges in smart fabrics with different fabrication methods.
    Conclusion and Prospect The smart fabric that can manage thermal and humid conditions of human body is necessary and the key is energy shortage. However, the performances of the thermal management, humidity management or thermal and humidity management of the recent smart fabric are directly affected and limited by the materials. Few high-performance functional materials can be utilized to fabricate smart fabrics. In addition, the main technical means of preparing thermal and moist comfort smart fabrics are coatings and material composites. However, the stability of coatings, the compatibility of composite materials, and the difficulty of industrial production limit the development of thermal and moist comfort smart fabrics. Therefore, it is necessary to prepare new fibers that can respond to external heat and humidity stimuli, so as to realize the preparation of fabrics that can intelligently regulate human body temperature and humidity. Additionally, the ease of construction, preparation, and large-scale production of fibers can reduce the cost of smart fabric production. Finally, the current preparation methods and functional principles of intelligent thermal-moist comfort fabrics are summarized, and a low-cost and large-scale preparation method for intelligent thermal-moist comfort fabrics is proposed by technological innovation of fibers.

    Table and Figures | Reference | Related Articles | Metrics
    Influencing factors for thermal insulating properties of cotton gauze quilts
    ZHANG Luyang, SONG Haibo, MENG Jing, YIN Lanjun, LU Yehu
    Journal of Textile Research    2023, 44 (07): 79-85.   DOI: 10.13475/j.fzxb.20220606401
    Abstract134)   HTML13)    PDF(pc) (2106KB)(222)       Save

    Objective Studies on thermal insulating properties of quilts have been carried out aiming to improve the thermal comfort and sleep quality. Previous studies mainly focused on quilts with filling materials, and few research focused on non-filling quilts such as gauze quilt. In order to provide more understanding on comfortable sleeping microclimate, a systematic investigation on thermal insulating properties of several gauze quilts with different parameters was conducted.

    Method 41 samples in total were provided, including 22 unwashed cotton gauze quilt fabric samples, 4 washed cotton gauze quilt fabric samples, 3 spunlaced cotton wadding samples, 6 cotton gauze quilt samples. The influences of air permeability, surface density and number of layers on heat resistance of cotton gauze quilts were analyzed by sweating hot plate tests and thermal manikin tests. The correlation between heat resistance of fabric and quilt was also established.

    Results It was found that the heat resistance of both cotton gauze quilt samples and cotton spunlaced wadding samples have significant positive linear relationships with surface density. The heat resistance rose with the increase of surface density. The growth rate of the spunlaced cotton wadding quilts (0.006 1) was higher than that of cotton gauze quilts (0.001 7). Heat resistance of cotton gauze quilt samples decreased with the increasing of air permeability, exhibiting a low correlation, but the influence on thermal insulation was obvious when the air permeability was below 1 000 mm/s. The heat resistance of the spunlaced cotton wadding quilt showed a significant negative linear relationship with its air permeability. In addition, the air permeability and surface density presented an exponentially negative correlation. The change rate was constantly decreasing when surface density was more than 450 g/m2. Generally, the air permeability of each cotton gauze quilt was above 500 mm/s, higher than that of the spunlaced cotton wadding quilt. The surface fitting results (thermal insulation as dependent variable, air permeability and surface density as independent variables) revealed that heat resistance and air permeability exhibited a low correlation. The surface density demonstrated a significant influence on heat resistance, and the heat resistance of cotton gauze quilt exhibited a positive linear relationship with the number of cotton gauze fabric layers. The air permeability of cotton gauze quilt showed power function relationship with the number of fabric layers. The heat resistance of cotton gauze quilt was increased after washing, with the average increase of about 20%. After once machine washing in 20 ℃ water, the thickness and surface density of cotton gauze quilt was increased by 26.6% and 13.6% in average, respectively, whereas the air permeability was decreases by 8.7% in average. A significant non-linear relationship exists between the heat resistance of fabric samples and quilt samples (p<0.05), which can be approximately expressed by an exponential function. In particular, they show approximate a linear relationship when the heat resistance of fabric was less than 1.8 clo.

    Conclusion The heat resistance of the cotton gauze quilts has a significant positive linear relationship with the surface density, exhibiting a negative and low correlated relationship with the air permeability. Therefore, surface density is more appropriate for the prediction of heat resistance value in engineering application. Under the same surface density, spunlaced cotton wadding quilt provides higher thermal insulating properties, while cotton gauze quilt provides bigger air permeability. The superimposition of cotton gauze fabric layers can produce thicker air gaps, resulting in higher thermal insulating property of cotton gauze quilt. Once machine washing has a positive effect on thermal insulating property of cotton gauze quilt by virtue of the increase of thickness and surface density after washing. Moreover, heat resistance of fabric samples can be adopted to predict the heat resistance of quilt, showing a significant non-linear correlation. These research findings can provide evidence for the design of cotton gauze quilts and usage guideline to achieve thermal comfort during sleeping.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers
    XUE Chao, ZHU Hao, YANG Xiaochuan, REN Yu, LIU Wanwan
    Journal of Textile Research    2022, 43 (07): 29-35.   DOI: 10.13475/j.fzxb.20210506707
    Abstract446)   HTML20)    PDF(pc) (9201KB)(221)       Save

    In order to improve the elastic properties of carbon nanotubes as conductive fillers, carbon nanotubes (CNT) and liquid metal (LM) were used as conductive fillers, thermoplastic polyurethane (TPU) was used as matrix, N, N-dimethylformamide was used as solvent, and deionized water was used as coagulation bath to produce the CNT/LM/TPU conductive fibers through the wet spinning process. The effects of LM and CNT on the structure and properties of fibers were studied. The results show that when the conductive filler content is 40% for LM and 10% for CNT, the mechanical properties of CNT/LM/TPU fiber were greatly improved with the fracture stress reaching 10.16 MPa and the elongation at break 252%. The CNT/LM/TPU fiber has good electrical conductivity, which is 5.41 S/m. Circuit experiments show that the fiber can be used as a wire lighting circuit, and the circuit can still have current through under the strain levels of 100% and 200%. CNT/LM/TPU fiber has excellent recovery performance, and it still has stable resistance recovery after 20 repeated tensile loading. In addition, the fiber also had good antibacterial properties, and the antibacterial rate against Staphylococcus aureus reaches 92.61%.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in color construction of high-performance fibers and its products
    XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin
    Journal of Textile Research    2023, 44 (06): 1-9.   DOI: 10.13475/j.fzxb.20230200602
    Abstract0)   HTML0)    PDF(pc) (7092KB)(220)       Save

    Significance High-performance fibers are key materials for the development of national textile industry, which is related to the development of national economic and strategic security. For the purposes of aesthetic enhancement, functional flexibility, and feature identification, demands on color construction of high-performance fiber have become an important driving force for the development of the colorful society. The development of color construction technique ranges from the chemical coloration to structural coloration technology. Additionally, future high-performance fiber will be permeable for long-term multi-field development in the applications of advanced and sophisticated areas, which is indispensable part of social progress, and integrating color construction of high-performance fiber is an ideal way to realize highly flexible and adaptive. To clearly understand the development and applications of high-performance fibers, master the frontiers and development trends of dyeing methods, and break through the technical bottlenecks of the industry, this paper comprehensively reviewed the research progress in color construction of high-performance fibers and its products.
    Progress The technical innovation and research status in color construction of the representative aramid fiber, carbon fiber, polyimide fiber, and ultra-high molecular weight polyethylene was focused. According to the structural characteristics, physical, and chemical properties of high-performance fibers, the aspects of fiber raw materials, molding processing, surface modification, and dyeing process are innovated, from which to implement color construction. Based on the development of chemical coloration methods including carrier dyeing, non-aqueous media solvents dyeing, dope dyeing, and structural coloration technology, maintaining the inherent high-performance characteristics is the building blocks of color construction process. The design of coloring method matching to the materials and structure effectively improves the dyeing property and dyeing fastness of high-performance fiber. However, significant limitation of promising coloring methods, which meets the social development concept, was demonstrated in industrial application.
    For the aramid fiber, based on the pre-regulation of the molecular structure, the low temperature carrier dyeing has been carried out for bright color and high color fastness. However, the removal of residual carrier, the safe reuse, and reduction of the influence on the mechanical properties should be further investigated. Due to the high crystallinity, high chemical inertness, and strong light absorption characteristics of carbon fiber, the structural color methods have been extensively used to construct colored carbon fibers, while the influence of interface properties to color fastness is an urgent problem to be solved. The golden color of the polyimide fiber will also affect the further color construction. Presently, the color construction methods of polyimide fiber mainly include carrier dyeing and surface modification dyeing. Carrier dyeing of ketone carriers is effective to the color construction, which can significantly improve the color fastness of polyimide fibers. According to the physical and chemical structural properties of ultra-high molecular weight polyethylene fiber, the modification of dyes is a preponderant method for achieving color diversity.
    Conclusion and Prospect High performance fiber refers to the chemical fiber with special physical and chemical structure, performance, and special function. As typical representative of high-performance fiber, carbon fiber, aramid fiber, polyimide fiber and ultra-high molecular weight polyethylene fiber are the four most widely used in aerospace, national defense science and technology, military engineering, construction industry, transportation, medical protection, civil industry, and electronic communications. However, the unicity of color limits its application to further expansion. Aiming at the problem of color construction, the methods including carrier dyeing, non-aqueous solvent dyeing, fiber surface modification dyeing, stock solution coloring, as well as physical structure color construction have been improved.
    Based on the current color construction technology, the attention of development tendency in the future will be attracted on promoting energy-saving, low-carbon, green and environmental protection dyeing, strengthening clean, and safe production. Meanwhile, theoretical fundamental research on the color construction of high-performance fibers is necessary to further investigate. Combining the macromolecular chain, chemical structure, molding process, surface physical, and chemical properties to achieve theoretical breakthrough in the color construction, theoretical innovation, and theoretical guidance for the preparation of colored high-performance fibers will be promoted.
    Additionally, to improve the dyeing depth and color fastness of fibers and reduce the structural damage in the color construction process of high-performance fibers, further attention should be paid to maintain the excellent structural stability. Therefore, in the development of color construction, balance the relationship between the color construction technology and high-performance fiber properties will promote the high-quality development and application expansion of high-performance fiber and its products. This paper summarized in the main the basic principles and research progress of the above-mentioned high-performance fibers, and also pointed out the main challenge and research direction of this research direction.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in preparation and application of conductive yarn materials
    LI Long, ZHANG Xian, WU Lei
    Journal of Textile Research    2023, 44 (07): 214-221.   DOI: 10.13475/j.fzxb.20211105002
    Abstract210)   HTML22)    PDF(pc) (3088KB)(218)       Save

    Significance The good conductivity of the material is the basis of manufacturing smart wearable devices. Because textile material is light, soft and good in air permeability and shape adaptability, textile-based flexible smart wearable devices have been attracting extensive attention from researchers. In recent years, the researchers have been using various techniques to integrate conductive materials with textile materials for manufacturing textile flexible intelligent wearable device for real-time monitoring of human health, friction power generation, personal thermal management, energy storage and so on. Conductive yarn is one of textile intelligent wearable materials, in order to further study the low-resistance and multi-performance conductive yarn for smart wearable devices, textile yarns was taken as the object. The methods of preparing conductive yarn materials were reviewed in relation to spinning technology, coating, coating combined with spinning technology and electrostatic spinning technology and application of the conductive yarns in electromagnetic protection, sensing device, energy storage device, transmission and power supply, artificial muscle, electric heating and thermal management device in recent years.

    Progress The advantages and disadvantages of conductive preparation methods are analyzed. Both conventional textile fibers and conductive fibers are spun into yarns by blending or wrapping using spinning technology, which can produce conductive yarns in batches. Besides, the yarn has excellent textile characteristics. However the conductive yarn is seldom used in resistance strain sensing. It is difficult for the mass production of conductive yarn prepared by coating technology, and the yarn has poor performance stability and poor weaving property, the preparation process is complicated and coating waste liquid may cause environmental pollution. Compared with the spinning technology, the method of preparing conductive yarn by coating is flexible, and the yarn has wide application. The auxiliary technology of electrostatic spinning nanofibers plays an important role in developing conductive yarns, and the conductive yarn with sheath-core structure prepared by electrostatic spinning technology overcomes some problems existing in conventional conductive coating. However, it is difficult to mass-produce conductive yarn by this method. The conductive yarn prepared by coating combined with spinning technology has good textile characteristics, but the conductive coating waste liquid of textile fiber materials may also cause environmental pollution.

    Conclusion and Prospect The future research and development trends of conductive yarn materials are proposed by combining the performance stability and the environmental safety of conductive yarn in its life cycle. It is proposed that the stability and service life of sensing performance under large strain needs to be further improved for the conductive yarn prepared used for resistance strain sensor. The conductive yarn needs additional flame retardant function,elasticity function and flexibility for their use in electric heating products so as to improve the use safety and wearing comfort. It is necessary to further study the change law of yarn conductivity under special environmental conditions (such as wet environment, high temperature environment, low temperature environment), so as to develop textile-based flexible smart wearable devices to be used in different temperature and humidity environments. It is still a research focus to develop conductive yarn materials with textile characteristics and lower linear resistance and good linear resistance uniformity. In order to popularize the practical application of textile flexible intelligent wearable devices, a development goal is that the whole life cycle of manufacturing, using and discarding of the conductive yarn has no negative impact on human health and environment. It is necessary to further optimize the structure of conductive yarn and innovate the integration technology of conductive materials and textile fiber materials, and improve the durability, sensibility, weaving property, biodegradability and mass production capacity of the conductive yarn.

    Reference | Related Articles | Metrics
    Research on supercritical CO2 waterless dyeing property of polyester knitted shoe materials
    SONG Jie, CAI Tao, ZHENG Fuer, ZHENG Huanda, ZHENG Laijiu
    Journal of Textile Research    2023, 44 (05): 46-53.   DOI: 10.13475/j.fzxb.20221106501
    Abstract128)   HTML17)    PDF(pc) (3058KB)(212)       Save

    Objective Knitted sports shoe materials have the advantages of structural integration, light weight, comfort and low cost, which attractes wide attention from the industry and consumers in recent years. However, with the increasingly prominent environmental pollution caused by conventional aqueous dyeing, how to achieve the eco-friendly dyeing of sports shoe materials has become the key development direction.

    Method In order to solve the problems of serious dyeing pollution and high energy consumption in the conventional dyeing, waterless dyeing of polyester knitted shoe materials was conducted with Disperse Yellow 54 using supercritical CO2 as medium. Influences of dyeing temperature, pressure, time and CO2 flow on the K/S values and levelling property were analyzed. The mechanical properties of polyester knitted shoe materials before and after dyeing were investigated, including bending, shrinkage, friction, tensile and durable properties.

    Results The results showed that supercritical CO2 displayed obvious influence on the dyeing properties of polyester knitted shoe materials. In supercritical CO2 dyeing system, the K/S values of the dyed polyester knitted shoe materials increased significantly with the rising of dyeing pressure, temperature and time. This is mainly because the increasing CO2 temperature and pressure present more and more plasticizing effect on polyester fiber. The dissolved dye molecules were more likely to approach the fiber interface, and would complete the adsorption through self-diffusion. Compared with aqueous dyeing, the dyeing process of polyester knitted shoe materials was able to completed with in 60 min in supercritical CO2 and the change of CO2 flow rate showed no significant influence on the K/S values. The deviation values of K/S data fluctuated around 0.1 at pressure ranging from 18 MPa to 26 MPa, temperature ranging from 105 ℃ to 125 ℃, time ranging from 20 min to 100 min as well as a CO2 flow from 380 kg/h to 460 kg/h, which represents good levelness. After supercritical CO2 dyeing, color fastness to rubbing and soaping of polyester shoe materials reached level 4 or above(Tab.1). The influence of CO2 temperature and pressure on the mechanical properties of shoe materials was different, and temperature had more significant influence on mechanical properties than pressure. When the CO2 temperature rose from 105 ℃ to 125 ℃, the bending rigidity increased from 9.90 mN·cm to 15.30 mN·cm(Fig.8), the maximum bending strength increased from 75.29 cN to 126.30 cN(Fig.8), the longitudinal shrinkage rate increased from 6.72% to 11.21%(Fig.9), the transverse shrinkage rate increased from 3.80% to 6.58%(Fig.9), the breaking strength increased from 1 048.23 N to 1 281.17 N(Fig.11), the elongation at break decreased from 42.05% to 36.6%(Fig.11), and the bursting strength increased from 2 235 N to 2 390 N(Fig.13). However, the test results revealed that the temperature and pressure played no remarkable influence on the tribological properties(Tab.2), and the static friction coefficient and dynamic friction coefficient of the polyester samples were almost constant.

    Conclusion By using supercritical CO2 instead of water as the medium, waterless dyeing of polyester knitted shoe materials can be achieved, and the deviation of K/S values is stable at 0.1±0.05. The optimal dyeing procedure was determined by balancing the dyeing effect and resource consumption. The dyed polyester knitted shoe materials with superior properties after supercritical CO2 dyeing indicate a favorable foreground. The above investigation provides an impurtant support for the clean industrial production of supercritical CO2 dyeing.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in one-way water transport textiles and their applications
    WANG Hongjie, HU Zhongwen, WANG He, FENG Quan, LIN Tong
    Journal of Textile Research    2022, 43 (11): 195-202.   DOI: 10.13475/j.fzxb.20210905108
    Abstract366)   HTML26)    PDF(pc) (3358KB)(210)       Save

    In order to further promote the one-way water transport technique with textiles and to expand its applications, a detailed overview on research, development, and applications of one-way water transport textiles is presented. This paper summarized the research progress in the one-way water transport textiles in recent years. The designed principles and the common preparation methods based on the surface energy gradient, development process, and the latest research progress were systematically introduced and discussed, and then the advantages and disadvantages of different preparation methods were reviewed and analyzed. The application fields were classified and discussed, including clothing, fog collection, oil-water separation, sensors and air filtration. The roles of one-way water transport textiles played in different applications were explained. Future developments and problems of the one-way water transport textiles were highlighted. Possible solutions were put forward aiming at the limitations of the preparation of one-way water transport textiles, and future development directions were discussed for theoretical and technical references to expand the applications of one-way water transport textiles.

    Table and Figures | Reference | Related Articles | Metrics
    Lightweight clothing detection method based on an improved YOLOv5 network
    CHEN Jinguang, LI Xue, SHAO Jingfeng, MA Lili
    Journal of Textile Research    2022, 43 (10): 155-160.   DOI: 10.13475/j.fzxb.20210809306
    Abstract684)   HTML25)    PDF(pc) (9127KB)(201)       Save

    In order to further reduce the occupation of computing resources by the clothing object detection model based on deep learning, an improved lightweight clothing object detection method, MV3L-YOLOv5, was proposed. The MobileNetV3_Large is used to construct the backbone network of YOLOv5, and the label smoothing strategy was introduced to enhance the generalization ability at the training stage of the model. The data augmentation technology was used to make up for the unbalanced number of images of different clothing categories in the DeepFashion2 dataset. Experimental results show that the model volume of MV3L-YOLOv5 is 10.27 MB, the floating-point operations is 10.2×109 times, and mean average precision is 76.6 %. Comparing with YOLOv5s, which is the lightest network in YOLOv5 series, MV3L-YOLOv5 is compressed in the model volume by 26.4 %, reduced the floating-point operations by 39 %, and improved accuracy by 1.3 %. Experimental results in the improved algorithm show that the detection performance is notably improved, and the model is lighter and more suitable for deployment in devices with limited resources.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in fabric reinforced flexible stab-resistance composites
    WANG Qiushi, HE Caiting, WANG Shan, CHEN Meiyu, LIANG Gaoyong, SUN Runjun
    Journal of Textile Research    2022, 43 (08): 183-188.   DOI: 10.13475/j.fzxb.20210801707
    Abstract324)   HTML20)    PDF(pc) (1604KB)(201)       Save

    In order to further understand the fabric-reinforced flexible stab-resistance composites for police body armor and improve the stab-resistance of the existing flexible protective equipment, a soft matrix was taken as the entry point to systematically introduce the structure and performance characteristics and influencing factors of various flexible stab-resistance composites, using principles such as shear thickening, hard particle coating, and enhanced resin. The latest research progress in the stab-resistance mechanism of fabric-reinforced flexible stab-resistance composites was summarized. Based on existing studies, the review highlighted the necessity of further research to overcome the shortcomings of protective equipment in terms of flexibility and comfort. A suggestion was made to integrate the advantages of different types of flexible stab-resistance composites in structure and performance characteristics and the stab-resistance mechanisms.

    Table and Figures | Reference | Related Articles | Metrics
    Continuous preparation of large-area structurally colored fabric with bionic photonic crystals
    WANG Xiaohui, LI Xinyang, LI Yichen, HU Min'gan, LIU Guojin, ZHOU Lan, SHAO Jianzhong
    Journal of Textile Research    2023, 44 (05): 21-28.   DOI: 10.13475/j.fzxb.20220801401
    Abstract181)   HTML27)    PDF(pc) (14679KB)(201)       Save

    Objective Photonic crystals (PCs) are composed of different dielectric constant materials in a periodic arrangement possessing a photonic band gap (PBG) that blocks the propagation of electromagnetic waves with certain wavelengths. If the wavelength of the blocked electromagnetic waves is in the visible light range, it forms a structural color. At present, it is difficult to fabricate continuously PCs coated fabrics with structural color in a large area, and it is difficult to balance the structural stability and optical properties of PCs, limiting the practice application of PCs in textile coloring field.

    Method A PCs-coated fabric was designed, achieving the rapid and continuous preparation of PCs with high structural stability and high color saturation on the fabric surface. Structural colored fabric was composed of a fabric substrate, a polymer layer and a PC layer. Liquid photonic crystal (LPC) with precrystallized structure was rapidly prepared by the rotary evaporation method, which was used as the working liquid for assembly. The surface of the fabric was coated with special polymer-L slurry with a scraper, and dried at 80 ℃ for 3 min and 120 ℃ for 1 min to form a flat polymer-L film on the surface of the fabric. The LPC was coated on the surface of the fabric pretreated by polymer-L with 20 μm filament rods, and then assembled at 60 ℃ for 5 min to obtain the PCs-coated fabric. Based on the assembly process and method of PCs, a pilot equipment for continuous fabrication of structural colored fabric is designed accordingly.

    Results LPCs were prepared by means of physical distillation and concentration to increase the volume fraction of nanospheres in colloidal system. By introducing dispersant-3B into the polystyrene (PS) nanospheres system, the problem of microspheres condensation during the process of spin evaporation was effectively solved. With the increase of dispersant-3B, the structural color brightness of LPC increased. When the dosage of dispersant was 1.5%, the structure color of the dispersion solution was not obvious (Fig.3). In addition, the results showed that the prepared LPC with excellent dynamic recovery exhibited bright structural color, and its optical properties were regulated by the volume fraction and particle size of the nanospheres (Fig.4). When subjected to external disturbance, the LPC was disassembled, and the structural color disappeared. After the external force was released, the LPC with precrystallized structure was rapidly reconstructed and restored, and the structural color was reproduced (completed within 10 s) (Fig.5). LPC was applied to the fabric surface with polymer coating by shear induction of external force, and the LPC was reconstructed and colored quickly (within 1 min) (Fig.8). After proper heating post-treatment (60 ℃, 5 min), as the water in the LPC continued to evaporate, the lattice spacing of the PC was decreased, but the structure color blue-shifts and the brightness of LPC showed significant increased. With the complete evaporation of water, the solid PC was formed. The interfacial molecules of the polymer layer migrate to the interior of PC, stabilizing the structure of color layer of the PC on fabric surface (Fig.9 and Fig.10). Using LPC as the assembly intermediate and self-developed pilot equipment, the rapid and continuous preparation of structurally colored fabrics was achieved (Fig.12).

    Conclusion The proposed preparation method of the PC-coated fabric demonstrated the advantages of simple operation and obvious effect. LPC with pre-crystallized structure and excellent dynamic recovery can be prepared rapidly and macroscopically by spinning evaporation. The special dispersant-3B introduced in the process of spin evaporation plays a synergistic role with SDS anionic surfactant in the system, significantly improves the steric hindrance and charge effect between the nanospheres, illustrating the resistance to the condensation of the microspheres. By pretreating the surface of textile substrate with special polymer, the PC layer is stabilized by utilizing the relaxation, activation, diffusion and recuring properties of interfacial polymer molecule, and the consistency of high structure stability and high color saturation of PCs-coated fabric can be achieved. Using LPC as the assembly working liquid, combined with the external force induced self-assembly method and the corresponding continuous processing equipment, the rapid large-scale continuous preparation of the PC-coated fabric with a fascinating iridescent effect can be achieved.

    Table and Figures | Reference | Related Articles | Metrics
    Journal of Textile Research    2022, 43 (07): 218-218.  
    Abstract286)      PDF(pc) (36297KB)(200)       Save
    Related Articles | Metrics