纺织学报 ›› 2018, Vol. 39 ›› Issue (12): 145-151.doi: 10.13475/j.fzxb.20180806607

• 纺织科技新见解学术沙龙专栏 • 上一篇    下一篇

碳纳米管纤维的物理性能与宏量制备及其应用

    

  1.  
  • 收稿日期:2018-08-27 修回日期:2018-09-05 出版日期:2018-12-15 发布日期:2018-12-17
  • 基金资助:

     

Physical properties and mass preparation and application of carbon nanotube fibers

    

  1.  
  • Received:2018-08-27 Revised:2018-09-05 Online:2018-12-15 Published:2018-12-17

摘要:

为更好地了解碳纳米管纤维的发展情况,综述了近年来碳纳米管纤维在物理性能及其宏量制备等方面的研究进展。从碳纳米管纤维的制备出发,分析了碳纳米管纤维的成形方式及力、电、热等物理性能增强方法,介绍了碳纳米管纤维的宏量制备发展过程,总结了目前存在的问题,阐述了碳纳米管纤维作为结构功能一体化材料的优势、应用情况及潜在应用领域,并根据目前行业现状对下一步的主要发展方向提出设想并进行了展望。最后提出,碳纳米管纤维作为最具有产业化潜力的纳米纤维材料之一,有望应用于航空航天、车辆、船舶等领域,可为未来我国军用和民用领域的结构功能一体化材料提供强有力的材料和技术支撑。

关键词: 碳纳米管纤维, 力学性能, 电学性能, 热学性能, 宏量制备

Abstract:

In order to better understand the development of carbon nanotube (CNT) fiber, the recent progresses of CNT fibers in physical properties and mass preparation in recent years were reviewed. Based on the preparation of CNT fibers, the forming methods and the enhancement methods of mechanical, electrical and thermal properties of CNT fibers were analyzed. The development process of the mass production of fiber was introduced, and existing problems were summarized. The advantages, the applications and the potential application fields of CNT fibers as a structure and function integrated material were represented, and the future main development trend was proposed and prospected according to the current industry status. CNT fibers as one of nanofiber materials with the largest industrialized potential is expected to be applied in the fields of aerospace, vehicles, ships and the like, providing powerful material and technical support for structure and function integrated materials in the military and civil fields in China.

Key words: carbon nanotube fiber, mechanical property, electrical property, thermal property, mass preparation

[1] BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616.
[2] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848.
[3] BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186.
[4] TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198.
[5] ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888.
[6] JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[7] BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595.
[8] GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514.
[9] VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334.
[10] BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186.
[11] ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450.
[12] LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278.
[13] KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892.
[14] LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071.
[15] MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855.
[16] MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603.
[17] ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696.
[18] SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55.
[19] TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415.
[20] JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801.
[21] ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361.
[22] ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248.
[23] ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510.
[24] KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993.
[25] ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001.
[26] ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617.
[27] MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811.
[28] FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221.
[29] LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708.
[30] MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826.
[31] TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670.
[32] ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27.
[33] JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339.
[34] HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207.
[35] LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407.
[36] LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834.
[37] MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485.
[38] BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344.
[39] RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975.
[40] RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255.
[41] JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010
[42] ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279.
[43] DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757.
[44] LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558.
[45] LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845.
[46] ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093.
[47] ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647.
[48] RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806.
[49] XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215.
[50] HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287.
[51] ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119.
[52] WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030
[53] ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197.
[54] SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202.
[55] SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888.
[56] JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[57] MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306.
[58] GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168.
[59] XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087.
[60] SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568.
[61] HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665.
[62] QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259.
[63] DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538.
[64] Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77., [1] BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616.
[2] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848.
[3] BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186.
[4] TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198.
[5] ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888.
[6] JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[7] BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595.
[8] GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514.
[9] VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334.
[10] BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186.
[11] ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450.
[12] LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278.
[13] KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892.
[14] LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071.
[15] MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855.
[16] MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603.
[17] ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696.
[18] SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55.
[19] TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415.
[20] JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801.
[21] ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361.
[22] ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248.
[23] ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510.
[24] KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993.
[25] ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001.
[26] ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617.
[27] MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811.
[28] FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221.
[29] LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708.
[30] MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826.
[31] TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670.
[32] ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27.
[33] JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339.
[34] HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207.
[35] LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407.
[36] LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834.
[37] MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485.
[38] BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344.
[39] RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975.
[40] RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255.
[41] JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010
[42] ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279.
[43] DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757.
[44] LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558.
[45] LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845.
[46] ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093.
[47] ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647.
[48] RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806.
[49] XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215.
[50] HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287.
[51] ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119.
[52] WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030
[53] ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197.
[54] SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202.
[55] SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888.
[56] JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[57] MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306.
[58] GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168.
[59] XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087.
[60] SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568.
[61] HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665.
[62] QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259.
[63] DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538.
[64] Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77.
[1] 闫红芹 徐文正 严庆帅 郭棋盛. 预处理方法对丝瓜络纤维性能的影响[J]. 纺织学报, 2018, 39(12): 72-77.
[2] 刘倩楠 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(09): 39-43.
[3] 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7.
[4] 罗平艳 蒋金华 陈南梁 胡淳 崔鹏. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018, 39(07): 50-54.
[5] 张希文 武海良 沈艳琴 毛宁涛. 温湿度对涤/棉浆纱力学性能的影响[J]. 纺织学报, 2018, 39(06): 70-74.
[6] 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19.
[7] 李倩 丁长坤 张静 杜建华 程博闻. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(05): 8-13.
[8] 石大为 王瑞 陈旭 吴炳洋. 基于射频处理的胡麻生物脱胶工艺[J]. 纺织学报, 2018, 39(03): 73-78.
[9] 靳世鑫 辛斌杰 郑元生. 静电纺丝法宏量制备纳米纤维的研究进展[J]. 纺织学报, 2018, 39(03): 175-180.
[10] 蒋志青 马延涛 郭亚 马建伟 陈韶娟. 仿针织牛仔面料的开发及性能评价[J]. 纺织学报, 2018, 39(03): 45-49.
[11] 王春红 陈祯 李园平 YOUSFANI Sheraz Hussain Siddique 陈雅颂. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15.
[12] 李瑛慧 谢春萍 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
[13] 王利娜 石素宇 辛长征 王永杰 葛正霞. 聚酯/棕榈基多孔碳纤维杂化膜的结晶和力学性能[J]. 纺织学报, 2017, 38(08): 6-10.
[14] 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67.
[15] 孙乐乐 肖长发 赵健 赵凯常. 乙烯-四氟乙烯共聚物织物的制备及其性能[J]. 纺织学报, 2017, 38(05): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 康阜生;严伟;程远欣;封冰;严迅;巫拱生. 接枝亚麻纤维的工业性试验(三)[J]. 纺织学报, 2004, 25(03): 72 -73 .
[2] 王晓红;杨锁廷;姚金波;刘建中;张淑洁. 拉伸细化羊毛纤维的性能研究[J]. 纺织学报, 2005, 26(1): 39 -41 .
[3] 张振义;吴瑜. 气流纺纱新工艺的技术经济分析[J]. 纺织学报, 1984, 5(09): 25 -29 .
[4] 冯文斌. 梳棉机大漏底鼻端改进试验[J]. 纺织学报, 1987, 8(01): 45 .
[5] 秦丽华. 使用卜氏纤维强力测试仪的注意事项[J]. 纺织学报, 1996, 17(04): 53 .
[6] 张迎春;蒋秀明;韩旭彤. 德国Malimo缝编机的平行衬纬改造[J]. 纺织学报, 2006, 27(1): 83 -88 .
[7] 马世平. 基于MATLAB的六连杆打纬机构优化设计及仿真[J]. 纺织学报, 2006, 27(3): 40 -42 .
[8] 迟克栋;江红;罗欣;吴慧莉. 纺织品的电晕处理与表面润湿性研究[J]. 纺织学报, 2003, 24(06): 42 -43 .
[9] 郭秉臣. 毛纺直型精梳机圆梳的梳理速度及梳理效能的分析[J]. 纺织学报, 1984, 5(09): 30 -32 .
[10] 陈国强. 羟乙基丙烯酸酯核壳共聚乳液粘合剂的研究[J]. 纺织学报, 1998, 19(05): 39 -41 .