纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 45-52.doi: 10.13475/j.fzxb.20180800408

• 纺织工程 • 上一篇    下一篇

多层多向机织复合材料细观结构建模及其性能

王心淼1,2, 陈利1,2(), 张典堂3, 陈冬1,2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室,天津 300387
    3.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2018-08-01 修回日期:2018-11-16 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 陈利
  • 作者简介:王心淼(1989—),女,博士生。主要研究方向立体机织复合材料。
  • 基金资助:
    天津市高等学校创新团队项目(TD13-5043)

Micro-structure and properties of multilayer multiaxial woven composites

WANG Xinmiao1,2, CHEN Li1,2(), ZHANG Diantang3, CHEN Dong1,2   

  1. 1. College of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
    3. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education , Wuxi, Jiangsu 214122, China
  • Received:2018-08-01 Revised:2018-11-16 Online:2019-02-15 Published:2019-02-01
  • Contact: CHEN Li

摘要:

为分析多层多向机织复合材料的细观结构,基于多层多向机织工艺及不同于传统机织结构的纱线空间运动规律,推导了工艺参数与结构参数之间的关系,建立了细观结构分析模型;为研究多层多向机织复合材料的拉伸性能和失效机制,采用多层多向机织工艺、树脂传递模塑复合工艺,以碳纤维和环氧树脂为原材料制备了2种不同结构的多层多向机织复合材料,采用万能试验机和非接触全场应变仪对材料进行了0°和90°方向的准静态拉伸性能测试,并与正交三向机织复合材料进行了对比分析。结果表明:斜向纱的存在对多层多向机织复合材料的拉伸破坏模式和断口形貌有较大影响,斜向纱一定程度上阻碍了裂纹和应变沿承载方向扩展,0°方向拉伸试样断口处经纱层内经纱全部断裂,90°方向拉伸试样断口处纬纱层内纬纱全部断裂,2个方向的拉伸试样斜向纱层中均存在部分斜向纱纤维未断裂,拉伸试样非完全断裂。

关键词: 多层多向机织, 机织复合材料, 细观结构, 拉伸性能

Abstract:

In order to study the tensile property and failure mechanism of multilayer multiaxial woven composites, based on the multilayer multiaxial weaving process and the spatial movement rule of yarn in the structure, the relationship between process parameters and structure parameters were deduced. Two kinds of multilayer multiaxial woven composites of different structures were prepared from carbon fibers and epoxy resin as raw materials by the multilayer multiaxial weaving process and the resin transfer molding composite process. The quasi-static tensile property of the material were measured by universal testing machine and a non-contact all-field stain meter, and was compared with that of three-dimensional orthogonal composite. The results show that the content of bias yarn in the structure has certain influence of the warpwise tensile property of the multilayer multiaxial woven composites. Bias yarn blocks cracks and strain from extending along the warpwise direction to a certain extent, and influences the failure modes of the material to a great extent. All the warps in the warp layer at the fracture of the sample are broken, and some of yarn in the bias yarn layer are not broken, and the tensioned samples are not completely broken.

Key words: multilayer multiaxial woven preform, woven composite, micro-structure, tensile property

中图分类号: 

  • TB332

表1

多层多向机织复合材料结构参数"

试样
编号
纱线层排列 密度/(根·(10 cm)-1) 纤维体积
含量/%
实际厚
度/mm
经向 纬向
WB4 90/0/45/-45/90/
-45/45/0/90
50 50 48.89 6.0
WB2 90/0/90/45/90/
-45/90/0/90
50 50 49.14 5.5
WB0 90/0/90/0/90/0/
90/0/90
50 50 49.43 5.0

图1

多层多向机织复合材料0°方向拉伸试样"

图2

法向纱几何模型"

图3

多层多向机织复合材料及各纱线层代表体积单元几何模型"

表2

多层多向机织复合材料的拉伸性能"

试样
编号
方向/
(°)
拉伸
强力/
kN
拉伸
强度/
MPa
弹性
模量/
MPa
泊松
厚度计
算值/
mm
WB4 0 45.38 302.50 39 427 0.275 5.98
WB2 0 37.13 270.46 41 120 0.210 5.51
WB0 0 70.12 561.00 45 887 0.051 5.05
WB4 90 50.06 333.75 29 087 0.281 5.98
WB2 90 52.50 381.82 34 897 0.157 5.51
WB0 90 80.37 643.00 57 078 0.081 5.05

图4

不同方向多层多向机织复合材料拉伸试样应力-应变曲线"

图5

0°方向拉伸试样WB4在不同应变水平下的纵向应变云图及拉伸破坏试样"

图6

0°方向拉伸试样WB0在不同应变水平下的纵向应变云图及拉伸破坏试样"

图7

正交三向机织复合材料试样WB0拉伸破坏形貌"

图8

多层多向机织复合材料0°方向拉伸破坏形貌照片"

图9

多层多向机织复合材料90°方向拉伸破坏形貌照片"

[1] SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mech Adv Mater Mod Processes, 2017,3(1):12.
[2] BILISIK K. Multiaxis three-dimensional weaving for composites: a review[J]. Text Res J, 2012,82(7):725-743.
[3] 杨彩云, 李嘉禄. 基于纱线真实形态的三维机织复合材料细观结构及其厚度计算[J]. 复合材料学报, 2005,22(6):178-182.
YANG Caiyun, LI Jialu. Microstructure and thickness equation of 3D woven composites based on yarn's true configuration[J]. Acta Mater Compos Sinica, 2005,22(6):178-182.
[4] KYLE C, WARREN R A. Lopez-Anido, et al. Experimental investigation of three-dimensional woven composites[J]. Composite: Part A, 2015,73:242-259.
[5] ROBERT G, CLIVE R Siviour, JENS Wiegand, et al. In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading[J]. Compos Sci Technol, 2012,72:397-411.
[6] WARREN Kyle C, LOPEZ-ANIDO R A, GOERING Jonathan. Experimental investigation of three-dimensional woven composites[J]. Compos: Part A, 2015,73:242-259.
[7] ANAHARA M, YASUI Y, OMORI H. Three dimensional fabric and method for producing the same:US 5137058[P]. 1992 -8-11.
[8] RUZAND J M, GUENOT G. Multiaxial three-dimensional fabric and process for its manufacture:WO 94/20658[P]. 1994 -9-15.
[9] FARLEY G L. Method and apparatus for weaving a woven angle ply fabric: US 5224519[P]. 1993 -7-6.
[10] UCHIDA H, YAMAMOTO T, TAKASHIMA H, et al. Three dimensional weaving machine: US 6003563[P]. 1999 -12-21.
[11] MOHAMED M H, BILISIK A K. Multi-layer three-dimensional fabric and method for producing: US5465760[P]. 1995 -11-14.
[12] BILISIK A K. Multiaxial three-dimensional (3D) circular woven fabric: US 6129122[P]. 2000 -10-10.
[13] BILISIK K. Multiaxis three dimensional (3D) flat woven fabric and weaving method: feasibility of prototype tube carrier weaving[J]. Fibres Text East Eur, 2009,17(6):63-69.
[14] BILISIK K. Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites[J]. J Reinf Plast Compos, 2010,29(8):1173-1186.
[15] 张一帆, 马明, 陈利. 多层多向织物复合材料力学性能分析[J]. 宇航材料工艺, 2013(2):31-34.
ZHANG Yifan, MA Ming, CHEN Li. Mechanical properties of composite reinforced by multi-ply mulit-axial performs[J]. Aerospace Mater Technol, 2013(2):31-34.
[16] AHMAD Rashed Labanieh, XAVIET Legrand, VLADAN Koncar. Development in the multiaxis 3D weaving technology[J]. Text Res J, 2016,86:1869-1884.
[17] WANG Xinmiao, CHEN Li, WANG Junshan. A novel multiaxial three-dimensional woven preform: process and structure[J]. J Reinf Plast Compos, 2018,37(4):247-266.
[18] SALEH M N, LUBINEAU G, POTLURI P. Micro-mechanics based damage mechanics for 3D orthogonal woven composites: experiment and numerical modelling[J]. Compos Struct, 2016,156:115-124.
[1] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[2] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[3] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[4] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[5] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[6] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[7] 高雄 胡侨乐 马颜雪 张琦 魏毅 邱夷平. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017, 38(09): 66-71.
[8] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[9] 房家惠 于伟东. 阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能[J]. 纺织学报, 2017, 38(06): 28-32.
[10] 郭囊括 李丽辉 代方银 陈杨 敬凌霄. 柔性多轴向经编聚氨酯涂层织物的拉伸性能[J]. 纺织学报, 2016, 37(11): 59-063.
[11] 刘东奇 王喆 王翔 尹翠玉 张宇峰. 甲醇蛋白改性粘胶纤维的结构与性能[J]. 纺织学报, 2016, 37(09): 12-15.
[12] 薛亚红 陈继刚 闫世程 骆俊廷 . 二维机织复合材料力学分析中的周期性边界条件研究[J]. 纺织学报, 2016, 37(09): 70-77.
[13] 吴波伟 张毅 黄帅 张卢娟 张孟洋. 拼纱根数对空气层组织织物拉伸性能的影响[J]. 纺织学报, 2016, 37(05): 47-50.
[14] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
[15] 钟智丽 廖镇东 张宏杰. 微溶解处理对大麻/棉混纺织物拉伸性能的影响[J]. 纺织学报, 2015, 36(10): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!