纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 127-133.doi: 10.13475/j.fzxb.20181203707

• 机械与器材 • 上一篇    下一篇

旋转多臂变速运动规律建模及其对开口机构传动影响

袁汝旺1,2(), 祝雷雷1,2, 吕雪奎3, 杨佳敏3   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代机电装备技术 重点实验室, 天津 300387
    3.江苏金龙科技股份有限公司, 江苏 苏州 215500
  • 收稿日期:2018-12-17 修回日期:2019-08-13 出版日期:2019-12-15 发布日期:2019-12-18
  • 作者简介:袁汝旺(1979—),男,讲师,博士。主要研究方向为纺织机械设计与机构学。E-mail:yuanruwang@tjpu.edu.cn
  • 基金资助:
    天津市自然科学基金项目(18JCYBJC20200)

Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving

YUAN Ruwang1,2(), ZHU Leilei1,2, LÜ Xuekui3, YANG Jiamin3   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
    3. Jiangsu Jinlong Technology Co., Ltd., Suzhou, Jiangsu 215500, China
  • Received:2018-12-17 Revised:2019-08-13 Online:2019-12-15 Published:2019-12-18

摘要:

针对电子多臂开口对不同织造工艺的适应性问题,分析旋转变速机构构型及其运动特性,从运动合成角度提出基于固定凸轮-滑块的旋转变速机构运动学分析与设计方法,建立适于产品系列化设计的旋转变速疏密化正弦运动规律模型及其相对运动传动模型,探讨连杆参数变化对机构性能与开口工艺的影响。结果表明:转子臂与偏心连杆相对运动为近似等角速比传动,提综臂运动特征值由0.000开始连续变化无突变;随疏密化调节系数增加,凸轮廓线、压力角、曲率半径、提综臂运动特征值及其相对主轴静止时间均减小;合理选择疏密化调节系数获得加速度或扭矩最优运动规律,可满足不同织造工艺需求,并为电子多臂机系列化设计提供理论基础与技术参考。

关键词: 电子多臂机, 旋转变速运动规律, 开口机构, 疏密化正弦规律

Abstract:

In order to address the adaptability of electronic dobby shedding to different weaving technologies, the construction and motion characteristics of the rotary shifting mechanism were analyzed. Methods for kinetically analyzing and designing the mechanism based on the fixed cam-slider combination were proposed, and a rotary shifting density sinusoidal motion curve model and a relative motion transmission model were established to facilitate the serialized design of the products. Then the influence of the changes in the linkage parameters on the performance of the rotary shifting mechanism and the workmanship of the shedding was investigated. The results show that the relative motion between the rotator arm and the eccentric link can be approximated as the constant angular speed ratio transmission, where the jacklever's motion eigenvalue starts from 0.000 and changes continuously along with the density adjustment coefficient without abrupt changes. The cam contour, pressure angle, curvature radius, the motion eigenvalue of the jacklever and its time of relative stillness to the main shaft are all reduced. A proper selection of the density adjustment coefficient can facilitate achieving an optimal pattern of the changing acceleration speed or torque to meet the needs of different weaving technologies, thereby laying a theoretical groundwork and providing a technical reference to the serialized design of electronic dobby.

Key words: electronic dobby machine, rotary shifting motion characteristic, shedding mechanism, density sinusoidal motion curve

中图分类号: 

  • TS1031

图1

旋转变速机构工作原理 1—转盘;2—共轭凸轮转子臂;3—滑块;4-4'—偏心连杆;5—盘形连杆;6—提综臂;7—共轭凸轮;8—转子。"

图2

旋转变速机构运动模型"

图3

绕平行轴转动的角位移关系"

表1

旋转变速机构尺寸参数"

l1/mm l2/mm l'4/mm l5/mm l6/mm ψ/rad
116.000 57.717 20.000 165.000 95.000 1.903 2
φ10/rad φ20/rad φ40/rad EOC'/rad X/mm Y/mm
π/2 3.760 8 π/2 0.724 5 185.100 39.850

图4

偏心连杆在不同旋转角度和不同b值下的相对运动特性"

图5

偏心连杆在不同旋转角度和不同b值下的绝对运动特性"

表2

不同b值时偏心连杆的特征值"

b Vm Am Tm
0.000 2.000 0 6.283 2 8.162 2
0.134 1.763 7 5.888 0 5.772 4
0.410 1.418 4 7.384 0 4.194 7
0.500 1.333 3 8.753 4 4.299 3

图6

偏心连杆实验与拟合数据对比"

图7

不同l4值时偏心连杆的传动分析"

表3

不同l4值时传动比分析"

l4/mm λmax λmin Δλ=λmax-λmin |λmax-1| |λmin-1|
56 0.933 0.740 0.193 0.067 0.260
58 1.000 0.779 0.221 0.00 0.221
60 1.071 0.819 0.252 0.071 0.181

图8

不同b值时凸轮实际廓线"

表4

不同b值时凸轮参数"

b 最大极
径/mm
最大压
力角/(°)
最小曲率
半径/mm
0.000 88.244 45.24 27.942
0.134 86.143 40.56 25.227
0.410 80.578 30.55 14.801

图9

不同旋转角度时提综臂运动特性"

表5

不同b值时提综臂停顿时间"

阈值m 角位移/
(°)
相对织机主轴静止转角/(°)
0.000 0.134 0.410
1.000 24.06 154 142 112
0.990 23.78 176 164 132
0.975 23.49 192 188 148
0.950 22.86 204 202 162
[1] 葛正浩, 张凯, 张双琳. 共轭凸轮开口机构的反求设计及动力学研究[J]. 机械设计, 2017,34(12):65-68.
GE Zhenghao, ZHANG Kai, ZHANG Shuanglin. Reverse design and dynamics research of conjugate cam shedding mechanism[J]. Journal of Machine Design, 2017,34(12):65-68.
[2] EREN R, ÖZKAN G, KARAHAN M. Comparison of heald frame motion generated by rotary dobby and crank & cam shedding motions[J]. Fibres & Textiles in Eastern Europe, 2005,13(4):78-83.
[3] CAN Ö, ABDULLA G. Design of a new dobby drive mechanism[J]. SDU Journal of Technical Sciences, 2014,4(1):32-34.
[4] ABDULLA G, HASCELIK B, PALAMUTCU S, et al. Synjournal work about driving mechanism of a novel rotary dobby mechanism[J]. Tekstil ve Konfeksiyon, 2010,20(3):218-224.
[5] EREN R, ÖZKAN G, TURHAN Y. Kinematics of rotary dobby and analysis of heald frame motion in weaving process[J]. Textile Research Journal, 2008,78(12):1070-1079.
[6] HSIEH W. An experimental study on cam-controlled planetary gear trains[J]. Mechanism & Machine Theory, 2007,42(5):513-525.
[7] FUMEX A, PAGES J P. Modulator mechanism for dobby: US, 5107901 [P]. 1992-04-28.
[8] HSIEH W. Kinematic synjournal of cam-controlled plane- tary gear trains[J]. Mechanism & Machine Theory, 2009,44(5):873-895.
[9] GUHA A, AMARNATH C, KURIEN I K, et al. Linkage driven dobby with dwell[J]. Textile Research Journal, 2009,79(9):804-809.
[10] GABIL A, GAMZE S, BILAL R, et al. Research of design's parameters of drive mechanism of RA14 dobby and development of the drive mechanism[J]. Annals of the University of Oradea Fascicle of Textiles Leatherwork, 2013,14(1):38-42.
[11] SOONGR . A new cam-geared mechanism for exact path generation[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2015,9(2).DOI: 10.1299/jamdsm.2015jamdsm0020.
[12] ALA D M, ÇELIK N. Alternative shedding mechanisms designed for a sampling loom[J]. Journal of Textiles and Engineer, 2016,23(103):182-188.
[13] 刘国栋, 智川, 张曼, 等. 固定凸轮的摆动从动件凸轮机构运动特性分析方法[J]. 机械设计, 2009,26(3):52-54.
LIU Guodong, ZHI Chuan, ZHANG Man, et al. Kinematic characteristic analysis method of cam mechanism with oscillating follower of fixed cam[J]. Journal of Machine Design, 2009,26(3):52-54.
[14] 季海彬, 周香琴, 成小军. 基于开口工艺要求的多臂机机构参数分析[J]. 浙江理工大学学报(自然科学版), 2016,35(2):205-210.
JI Haibin, ZHOU Xiangqin, CHENG Xiaojun. Analysis of dobby mechanism parameters based on opening process requirements[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2016,35(2):205-210.
[15] 金国光, 魏晓勇, 魏展, 等. 旋转式多臂机提综机构动力学分析与优化[J]. 纺织学报, 2018,39(9):160-168.
JIN Guoguang, WEI Xiaoyong, WEI Zhan, et al. Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism[J]. Journal of Textile Research, 2018,39(9):160-168.
[16] 沈毅, 高大牛, 刘春雷. 基于ADAMS的GT421型多臂机机构动态仿真[J]. 纺织学报, 2012,33(8):119-123, 129.
SHEN Yi, GAO Daniu, LIU Chunlei. Dynamic simulation of mechanism of GT421 dobby based on ADMAS[J]. Journal of Textile Research, 2012,33(8):119-123, 129.
[17] 袁汝旺, 陈瑞, 蒋秀明, 等. 碳纤维多层织机打纬机构运动学分析与尺寸综合[J]. 纺织学报, 2017,38(11):137-142.
YUAN Ruwang, CHEN Rui, JIANG Xiuming, et al. Kinematics analysis and dimension synjournal of beating-up mechanism for carbon fiber multi-layer loom[J]. Journal of Textile Research, 2017,38(11):137-142.
[1] 邱海飞. 3D打印技术在织机打纬−开口机构中的应用[J]. 纺织学报, 2017, 38(01): 140-146.
[2] 沈毅, 高大牛, 刘春雷. 基于ADMAS的GT421型多臂机机构动态仿真[J]. 纺织学报, 2012, 33(8): 119-123.
[3] 王钢飚;吴菁;陈宗农;陈天丰. 基于伺服电机的电子开口机构[J]. 纺织学报, 2009, 30(12): 117-120.
[4] 崔鸿钧. 消极式凸轮开口机构回综分析[J]. 纺织学报, 2006, 27(8): 32-36.
[5] 闭治跃;袁嫣红;李志祥;竺志超. 丰田电子开口机构原理分析及探讨[J]. 纺织学报, 2005, 26(3): 63-65.
[6] 郑智毓. LW52型喷水织机开口、引纬测试分析[J]. 纺织学报, 2002, 23(06): 51-52.
[7] 李伟. 片梭电子多臂机控制系统软件设计[J]. 纺织学报, 2002, 23(06): 57-59.
[8] 吴伟听;李志祥. 新型电子开口的原理与分析[J]. 纺织学报, 2002, 23(04): 36-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!