纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 188-196.doi: 10.13475/j.fzxb.20181205709

• 综合述评 • 上一篇    

基于共价结合的纳米银抗菌棉织物研究进展

赵兵1,2,3(), 黄小萃4, 祁宁1, 钟洲2, 车明国2, 葛亮亮3   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.超美斯新材料股份有限公司, 江苏 苏州 215200
    3.苏州吉晟信纺织有限公司, 江苏 苏州 215104
    4.苏州市职业大学 丝绸应用技术研究所, 江苏 苏州 215104
  • 收稿日期:2018-12-26 修回日期:2019-12-04 出版日期:2020-03-15 发布日期:2020-03-27
  • 作者简介:赵兵(1984—),男,副研究馆员,博士。主要研究方向为功能纳米材料的制备及应用。E-mail:zhaobing@suda.edu.cn
  • 基金资助:
    中国博士后科学基金资助项目(2018M642313);江苏省博士后科学基金项目(2018K110C);江苏省双创博士项目(2018);中国纺织工业联合会科技指导性计划项目(2019035)

Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond

ZHAO Bing1,2,3(), HUANG Xiaocui4, QI Ning1, ZHONG Zhou2, CHE Mingguo2, GE Liangliang3   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. X-FIPER New Material Co., Ltd., Suzhou, Jiangsu 215200, China
    3. Suzhou Jctex Co., Ltd., Suzhou, Jiangsu 215104, China
    4. Institute of Applied Technology of Silk, Suzhou Vocational University, Suzhou, Jiangsu 215104, China
  • Received:2018-12-26 Revised:2019-12-04 Online:2020-03-15 Published:2020-03-27

摘要:

针对棉织物与纳米银之间缺乏亲和性,主要依靠物理吸附结合,水洗牢度差等问题,总结了基于共价结合的纳米银抗菌棉织物的最新研究进展,探讨了席夫碱反应和酯化反应这2种共价结合机制。以纳米银与棉织物之间的共价交联剂(超支化聚合物、树状大分子、丝素、丝胶、半胱氨酸、蛋氨酸、巯基乙酸、壳聚糖衍生物、聚苯乙烯-b-聚丙烯酸、丁烷四羧酸)种类进行分类介绍,结合抑菌率和银含量的数据讨论了基于共价结合的纳米银抗菌棉织物的制备工艺、抗菌性能和抗菌耐洗性能。最后对基于共价结合的纳米银抗菌棉织物领域存在的不足和未来需要深入关注的地方进行了探讨。研究指出,共价交联法大幅提高了纳米银的抗菌耐洗性能,为开发环境友好和长效抗菌的纳米银纺织品提供了新思路和新途径。

关键词: 棉织物, 共价键, 纳米银, 抗菌性, 席夫碱反应, 酯化反应

Abstract:

In view of unaffinity, weak physical adsorption and poor washing fastness between cotton fabric and silver nanoparticles (AgNPs), the latest research progress of AgNPs antibacterial cotton fabric based on covalent bond was systematically reviewed. Two covalent bond mechanisms, schiff base reaction and esterification reaction, were described. Combined with the data of inhibition rate and silver content, preparation process, antibacterial property and wash fastness of AgNPs antibacterial cotton fabric based on covalent bond were discussed, which were classified by covalent crosslinkers between AgNPs and cotton fabric, such as hyperbranched polymers, dendrimers, silk fibroin, sericin, cysteine, methionine, mercaptoacetic acid, chitosan derivatives, polystyrene-b-polyacrylic acid, butane tetracarboxylic acid, and so on. Finally, the shortcomings and the concerns in future of AgNPs antibacterial cotton fabric based on covalent bond were introduced. It is pointed out that the covalent crosslinking methods greatly improve the antibacterial washability of AgNPs and provide a new thought and a new way for developing environmentally friendly and durable antibacterial AgNPs textiles.

Key words: cotton fabric, covalent bond, silver nanoparticles, antibacterial property, schiff base reaction, esterification reaction

中图分类号: 

  • TB333

图1

二醛织物素与AgNPs-NH2反应机制示意图"

图2

丝素/AgNPs整理氧化棉织物反应原理示意图"

图3

L-半胱氨酸/羧甲基壳聚糖/棉织物共价交联AgNPs反应原理图"

[1] 赵兵, 祁宁, 张德锁, 等. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017,31(1):126-130.
ZHAO Bing, QI Ning, ZHANG Desuo, et al. Progress on self-driven nanotechnology for biological systems[J]. Materials Review, 2017,31(1):126-130.
[2] 丁晨, 赵兵, 祁宁. 基于银纳米线导电网络的电子纺织品[J]. 化学进展, 2017,29(8):892-901.
DING Chen, ZHAO Bing, QI Ning. Electronic textiles based on silver nanowire conductive network[J]. Progress in Chemistry, 2017,29(8):892-901.
[3] 赵兵, 祁宁, 徐安长, 等. 石墨烯/蚕丝复合材料研究进展[J]. 纺织学报, 2018,39(10):168-174.
ZHAO Bing, QI Ning, XU Anchang, et al. Research progress on graphene/silk composite materials[J]. Journal of Textile Research, 2018,39(10):168-174.
[4] 赵兵, 祁宁. 石墨烯和氧化石墨烯在纺织印染中的应用[J]. 印染, 2014,40(5):49-52.
ZHAO Bing, QI Ning. Application of graphene and graphene oxide in textiles, dyeing and printing industry[J]. China Dyeing & Finishing, 2014,40(5):49-52.
[5] RIAZ S, ASHRAF M, HUSSAIN T, et al. Functional finishing and coloration of textiles with nano-materials[J]. Coloration Technology, 2018,134(5):327-346.
[6] SIMONCIC B, KLEMENCIC D. Preparation and performance of silver as an antimicrobial agent for textiles: a review[J]. Textile Research Journal, 2016,86(2):210-223.
[7] 高党鸽, 李亚娟, 吕斌, 等. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018,39(8):171-178.
GAO Dangge, LI Yajuan, LÜ Bin, et al. Research progress in preparation of nano silver and its application in textiles[J]. Journal of Textile Research, 2018,39(8):171-178.
[8] 朱玲英, 郭大伟, 顾宁. 纳米银细胞毒性体外检测方法研究进展[J]. 科学通报, 2014,59(22):2145-2152.
ZHU Lingying, GUO Dawei, GU Ning. Advances in in vitro detection of cytotoxicity induced by silver nanoparticles[J]. Chinese Science Bulletin, 2014,59(22):2145-2152.
[9] 陈思宇, 张峰, 陶玥, 等. 不同电荷体系纳米银溶液的研究现状[J]. 沙洲职业工学院学报, 2015,18(1):28-33.
CHEN Siyu, ZHANG Feng, TAO Yue, et al. Research status of nano silver solutions with different charge systems[J]. Journal of Shazhou Polytechinical Institute of Technology, 2015,18(1):28-33.
[10] ZHANG Y, XU Q, FU F, et al. Durable antimicrobial cotton textiles modified with inorganic nanoparticles[J]. Cellulose, 2016,23(5):2791-2808.
[11] 赵兵, 林红, 陈宇岳. 高碘酸钠选择性氧化纤维素研究进展[J]. 现代纺织技术, 2013,21(5):58-61.
ZHAO Bing, LIN Hong, CHEN Yuyue. Research progress of cellulose selectively oxidized by sodium periodate[J]. Advanced Textile Technology, 2013,21(5):58-61.
[12] CAI Q, YANG S, ZHANG C, et al. Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity[J]. ACS Applied Materials & Interfaces, 2018,10(44):38506-38516.
doi: 10.1021/acsami.8b14986 pmid: 30360113
[13] ZHANG F, WU X, CHEN Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish[J]. Fibers and Polymers, 2009,10(4):496-501.
[14] ZHANG D S, LIU X Y, LI J L, et al. Design and fabrication of a new class of nano hybrid materials based on reactive polymeric molecular cages[J]. Langmuir, 2013,29(36):11498-11505.
pmid: 23980927
[15] ZHAI C, WEI C, XU J, et al. Synjournal and characterization of Au and Ag nanoparticles protected by PAMAM and its derivative[J]. Colloid Journal, 2009,71(6):764-770.
[16] ZHANG D, ZHANG G, LIAO Y, et al. Synjournal of ZnO nanoparticles in aqueous solution by hyperbranched polymer[J]. Materials Letters, 2013,102:98-101.
[17] CUI Y, ZHANG J, YU Q, et al. Highly biocompatible zwitterionic dendrimer-encapsulated platinum nanoparticles for sensitive detection of glucose in complex medium[J]. New Journal of Chemistry, 2019,43(23):9076-9083.
doi: 10.1039/C9NJ01101C
[18] SHI Y, MA Z, CUI N, et al. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers[J]. Nanoscale Research Letters, 2014,9:121.
[19] ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013,92(2):2088-2094.
doi: 10.1016/j.carbpol.2012.11.100
[20] ZHANG F, CHEN Y, LIN H, et al. HBP-NH2 grafted cotton fiber: preparation and salt-free dyeing properties[J]. Carbohydrate Polymers, 2008,74(2):250-256.
doi: 10.1016/j.carbpol.2008.02.006
[21] 陈文静. PAMAM包络纳米银的制备及其在抗菌棉织物中的应用[D]. 株洲:湖南工业大学, 2012: 50-51.
CHEN Wenjing. Synthesis of PAMAM dendrimer-encapsulated silver nanoparticles and antibacterial activity on cotton fabric[D]. Zhuzhou: Hunan University of Technology, 2012: 50-51.
[22] ZHANG F, CHEN Y Y, LIN H, et al. Performance of cotton fabric treated with an amino-terminated hyperbranched polymer[J]. Fibers and Polymers, 2008,9(5):515-520.
doi: 10.1007/s12221-008-0082-5
[23] 陈岭, 张德锁, 林红, 等. 棉纤维的氨基化改性及长效抗菌功能加工研究[J]. 纺织导报, 2014(10):89-92.
CHEN Ling, ZHANG Desuo, LIN Hong, et al. Fabrication of amino groups functional cotton fibers and their long-acting antibacterial finishing[J]. China Textile Leader, 2014(10):89-92.
[24] 张德锁, 陈岭, 赵敏. 改性活性棉织物的纳米银原位组装抗菌整理[J]. 纺织学报, 2017,38(6):169-174.
ZHANG Desuo, CHEN Ling, ZHAO Min. In-situ assembling of silver nanoparticles on modified active cotton fabric for antibacterial finishing[J]. Journal of Textile Research, 2017,38(6):169-174.
[25] 董猛, 张德锁, 林红, 等. MHBP-OH纳米银的制备及其对棉织物的长效抗菌整理[J]. 纺织导报, 2016(5):72-75.
DONG Meng, ZHANG Desuo, LIN Hong, et al. preparation of silver nanoparticles by MHBP-OH and its application to the antibacterial finishing of cotton fabric by in-situ approach[J]. China Textile Leader, 2016(5):72-75.
[26] SADANAND V, TIAN H, RAJULU A V, et al. Antibacterial cotton fabric with in situ generated silver nanoparticles by one-step hydrothermal method[J]. International Journal of Polymer Analysis and Characterization, 2017,22(3):275-279.
[27] TANG B, KAUR J, SUN L, et al. Multifunctionalization of cotton through in situ green synjournal of silver nanoparticles[J]. Cellulose, 2013,20(6):3053-3065.
[28] 赵兵, 张燕, 林红, 等. 高碘酸钠选择性氧化亚麻纤维研究[J]. 天津工业大学学报, 2010,29(4):61-63.
ZHAO Bing, ZHANG Yan, LIN Hong, et al. Research of selective oxidation of linen fiber with sodium periodate[J]. Journal of Tiangong University, 2010,29(4):61-63.
[29] 董雪, 邢铁玲, 盛家镛, 等. 棉织物的丝胶涂层整理及其性能[J]. 纺织学报, 2014,35(11):112-117.
DONG Xue, XING Tieling, SHENG Jiayong, et al. Study on sericin coated finishing of cotton fabric and its properties[J]. Journal of Textile Research, 2014,35(11):112-117.
[30] 高晓红, 孟臣, 孟康, 等. 丝胶/纳米银溶胶的制备及其对涤纶的改性[J]. 印染, 2015,41(12):1-5.
GAO Xiaohong, MENG Chen, MENG Kang, et al. Preparation of sericin/nano-Ag sol and its application to polyester modification[J]. China Dyeing & Finishing, 2015,41(12):1-5.
[31] YUE X, LIN H, YAN T, et al. Synjournal of silver nanoparticles with sericin and functional finishing to cotton fabrics[J]. Fibers and Polymers, 2014,15(4):716-722.
[32] 魏帅男. 纳米银溶胶的制备以及对亚麻的功能整理[D]. 上海:东华大学, 2017: 1-20.
WEI Shuainan. Synthesis of nanometer silvercolloid and functional finishing to linen[D]. Shanghai: Donghua University, 2017: 1-20.
[33] 李陈梅. 丝素纳米银的制备及其对棉织物的改性整理[D]. 苏州:苏州大学, 2014: 52-53.
LI Chenmei. Preparation of silk fibroin stabilized silver nanoparticles and their application for modification of cotton fabric[D]. Suzhou: Soochow University, 2014: 52-53.
[34] XU Q, GU J, ZHAO Y, et al. Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles[J]. Fibers and Polymers, 2017,18(11):2204-2211.
[35] ZHOU J, CAI D, XU Q, et al. Excellent binding effect of L-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing[J]. RSC Advances, 2018,8(43):24458-24463.
[36] XU Q, KE X, ZHANG Y, et al. Facile fabrication of durable antibacterial cotton fabric realized by thioglycolic acid and silver nanoparticles[J]. Fibers and Polymers, 2018,19(11):2307-2316.
[37] PARK S Y, CHUNG J W, PRIESTLEY R D, et al. Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity[J]. Cellulose, 2012,19(6):2141-2151.
[38] GOUDA M, ALJAAFARI A, AL-FAYZ Y, et al. Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics[J]. Journal of Nanomaterials, 2015: 586904.
[39] CAI D, ZHOU J, DUAN P, et al. A hierarchical structure of l-cysteine/Ag NPs/hydrogel for conductive cotton fabrics with high stability against mechanical deformation[J]. Cellulose, 2018,25(12):7355-7367.
[40] 顾家源, 付飞亚, 刘向东. 雾聚合表面接枝改性新方法及其应用进展[J]. 浙江理工大学学报(自然科学版), 2016,35(5):679-684.
GU Jiayuan, FU Feiya, LIU Xiangdong. Novel “mist polymerization” technique for surface grafting modification and its application[J]. Journal of Zhejiang Sci-Tech University, 2016,35(5):679-684.
[41] YANG Z, ZHANG Y, FU F, et al. Single-faced flame resistance of cotton fabrics modified via mist copolymerization[J]. RSC Advances, 2017,7(85):53871-53877.
[42] XI G, WANG J, LUO G, et al. Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization[J]. Cellulose, 2016,23(1):915-927.
[43] XI G, FAN W, WANG L, et al. Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl metha-crylate[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015,53(16):1862-1871.
[44] XU Q, KE X, CAI D, et al. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect[J]. Cellulose, 2018,25(3):2129-2141.
[45] XU Q, DUAN P, ZHANG Y, et al. Double protect copper nanoparticles loaded on L-cysteine modified cotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(11):2324-2334.
[46] XU Q, KE X, GE N, et al. Preparation of copper nanoparticles coated cotton fabrics with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(5):1004-1013.
[47] XU Q, WU Y, ZHANG Y, et al. Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder[J]. Fibers and Polymers, 2016,17(11):1782-1789.
[48] XU Q, KE X, SHEN L, et al. Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric[J]. International Journal of Biological Macromolecules, 2018,111:796-803.
doi: 10.1016/j.ijbiomac.2018.01.091 pmid: 29367162
[49] XU Q, ZHENG W, DUAN P, et al. One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer[J]. Carbohydrate Polymers, 2019,204:42-49.
doi: 10.1016/j.carbpol.2018.09.089 pmid: 30366541
[50] XU Q, XIE L, DIAO H, et al. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan[J]. Carbohydrate Polymers, 2017,177:187-193.
doi: 10.1016/j.carbpol.2017.08.129 pmid: 28962757
[51] XU Q, LI R, SHEN L, et al. Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine[J]. Applied Surface Science, 2019,497:143673.
[52] BUDAMA L, CAKIR B A, TOPEL O, et al. A new strategy for producing antibacterial textile surfaces using silver nanoparticles[J]. Chemical Engineering Journal, 2013,228:489-495.
[53] 肖慧芳, 阎克路, 纪柏林. 糖类添加剂在1,2,3,4-丁烷四羧酸棉织物防皱整理中的应用[J]. 纺织学报, 2018,39(7):89-94.
XIAO Huifang, YAN Kelu, JI Bolin. Application of carbohydrate additives in 1, 2, 3, 4-butanetetracarboxylic acid anti-wrinkle finishing of cotton fabrics[J]. Journal of Textile Research, 2018,39(7):89-94.
[54] MONTAZER M, ALIMOHAMMADI F, SHAMEI A, et al. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing[J]. Colloids and Surfaces B: Biointerfaces, 2012,89:196-202.
pmid: 21978552
[1] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[2] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[3] 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[4] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[5] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[6] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[7] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[8] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[9] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[10] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[11] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[12] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[13] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[14] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[15] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!