纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 122-127.doi: 10.13475/j.fzxb.20200200807

• 服装工程 • 上一篇    下一篇

针织运动服的通风设计与热湿舒适性评价

孙岑文捷1, 倪军1,2,3(), 张昭华1,2,3, 董婉婷1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200092
  • 收稿日期:2020-02-03 修回日期:2020-08-10 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 倪军
  • 作者简介:孙岑文捷(1996—),女,硕士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232020G-08)

Ventilation design and thermal-wet comfort evaluation of knitted sportswear

SUN Cenwenjie1, NI Jun1,2,3(), ZHANG Zhaohua1,2,3, DONG Wanting1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2020-02-03 Revised:2020-08-10 Online:2020-11-15 Published:2020-11-26
  • Contact: NI Jun

摘要:

为研究通风孔和通风道设计对人体运动热生理及主观舒适感的影响,采用针织挑洞工艺与凸条工艺设计了2款运动服,在人工气候舱中进行着装人体实验,评价所研发运动服对人体皮肤温度、衣下湿度、汗液蒸发率等客观生理指标,以及主观热感觉、湿感觉、黏体感、舒适感的影响。结果表明:具有通风孔设计的服装能显著增加人体汗液蒸发,降低衣下湿度,同时受试者的主观热、湿、黏体及不舒适感也显著下降;在通风孔基础上进一步增加通风道设计的服装,由于衣下空气层厚度的增大,使得服装的热阻也增加,未能起到进一步改善人体热生理及舒适感的作用;在运动服的设计中,应当在控制服装热阻的前提下尽量提高通风性能。

关键词: 凸条组织, 挑洞组织, 针织运动服装, 人体热生理, 热湿舒适性, 通风设计

Abstract:

To study the influence of ventilation pores and ventilation channel on human body thermal physiology and subjective comfort, two types of sportswear were designed employing knitting holes and cord structures. Experiments were carried out in the climate chamber to evaluate the objective physiological indexes of the developed sportswear, such as skin temperature, under clothing humidity and sweat evaporation rate. Subjective sensations including thermal, wetness, stickiness and comfort were evaluated as well. The results show that the clothes with ventilation pores significantly increase the evaporation of human sweat and reduce the humidity under the clothes, with all the subjective sensations significantly reduced. However, when the ventilation channels were further added on the basis of ventilation holes, the thermal resistance of clothing is increased due to the increase of the thickness of air layer under the clothing, which is contradictive to the improvement of the thermal physiology and comfort sensation. It is learned that when designing sportswear, consideration of ventilation performance should be balanced with the premise of controlling the thermal resistance.

Key words: cord structure, hole picking structure, knitted sportswear, human thermal physiology, thermal-wet comfort, ventilation design

中图分类号: 

  • TS941.16

图1

实验服款式"

图2

主观评价量表"

表1

实验流程表"

初始阶段/min 运动阶段/min 恢复阶段/min
静立(PD1) 热身(PD2) 运动(PD3) 缓冲(PD4) 静立(PD5)
0~20 20~25 25~55 55~60 60~80

图3

耳道温度、皮肤温度和心率的平均值"

图4

汗液蒸发效率和出汗量"

图5

衣下湿度"

图6

主观感觉评分"

[1] HO C, FAN J, NEWTON E, et al. The effect of added fullness and ventilation holes in T-shirt design on thermal comfort[J]. Ergonomics, 2011,54(4):403-410.
doi: 10.1080/00140139.2011.556260
[2] SUN C, AU J Sc, FAN J, et al. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort[J]. Applied Ergonomics, 2015,48:138-147.
doi: 10.1016/j.apergo.2014.11.012 pmid: 25683541
[3] FOURNET D, REDORTIER B, HAVENITH G. A method for whole-body skin temperature mapping in humans[J]. Thermol Int, 2012,22:157-159.
[4] SMITH C J, HAVENITH G. Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia[J]. European Journal of Applied Physiology, 2011,111(7):1391-1404.
doi: 10.1007/s00421-010-1744-8
[5] 张文欢, 钱晓明, 范金土, 等. 人体出汗率分布的研究进展[J]. 纺织学报, 2018,39(8):179-184.
ZHANG Wenhuan, QIAN Xiaoming, FAN Jintu, et al. Research progress of human sweating rate distribu-tion[J]. Journal of Textile Research, 2018,39(8):179-184.
[6] GERRETT N, OUZZAHRA Y, COLEBY S, et al. Thermal sensitivity to warmth during rest and exercise: a sex comparison[J]. European Journal of Applied Physiology, 2014,114(7):1451-1462.
doi: 10.1007/s00421-014-2875-0
[7] FILINGERI D, FOURNET D, HODDER S, et al. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures[J]. Journal of Applied Physiology, 2014,117(8):887-897.
doi: 10.1152/japplphysiol.00535.2014
[8] FILINGERI D, REDORTIER B, HODDER S, et al. The role of decreasing contact temperatures and skin cooling in the perception of skin wetness[J]. Neuroscience Letters, 2013,551.
doi: 10.1016/j.neulet.2013.04.038 pmid: 23643980
[9] 李佳怡, 卢业虎, 王发明, 等. 应用男体出汗图谱的运动装设计与性能评价[J]. 纺织学报, 2016,37(1):116-122.
LI Jiayi, LU Yehu, WANG Faming, et al. Design and performance evaluation of sportswear based on men's sweating atlas[J]. Journal of Textile Research, 2016,37(1):116-122.
[10] 王永进, 宋彦杰, 刁杰. 排球比赛服的功能结构设计研究[J]. 纺织学报, 2014,35(2):71-77.
WANG Yongjin, SONG Yanjie, DIAO Jie. Functional structure design of volleyball match suit[J]. Journal of Textile Research, 2014,35(2):71-77.
[11] VARADARAJU R, SRINIVASAN J. Design of sports clothing for hot environments[J]. Applied Ergonomics, 2019,80:248-255.
doi: 10.1016/j.apergo.2018.02.013 pmid: 29478668
[12] SMITH C J, HAVENITH G. Body mapping of sweating patterns in athletes: a sex comparison[J]. Med Sci Sports Exerc, 2012,44(12):2350-2361.
doi: 10.1249/MSS.0b013e318267b0c4 pmid: 22811031
[1] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[2] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[3] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[4] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[5] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[6] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[7] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[8] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[9] 张纪婷 蒋高明. 保暖涤纶割圈绒织物的热湿舒适性[J]. 纺织学报, 2015, 36(04): 55-59.
[10] 张新杰 丛洪莲. 结构参数对割圈绒织物热湿舒适性的影响[J]. 纺织学报, 2014, 35(1): 46-0.
[11] 徐巧 丛洪莲. 冰爽涤纶无缝内衣面料热湿舒适性的综合评价[J]. 纺织学报, 2013, 34(11): 49-0.
[12] 王立新, 范雪荣, 孙友昌, 柴蕾. 基于纤维孔隙状况的皮革服装材料热湿舒适性的比较[J]. 纺织学报, 2012, 33(8): 97-102.
[13] 李敏;涂建雯. Coolmax/棉双面效应针织面料热湿舒适性综合评价与预测[J]. 纺织学报, 2010, 31(11): 39-43.
[14] 黄淑平;马崇启;周衡书. 竹原纤维织物热湿舒适性的灰色关联评价模型[J]. 纺织学报, 2009, 30(9): 33-36.
[15] 徐先林;黄故;齐利霞. 牛奶蛋白纤维混纺针织物热湿舒适性能[J]. 纺织学报, 2009, 30(04): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!