纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 21-27.doi: 10.13475/j.fzxb.20210910807

• 纤维材料 • 上一篇    下一篇

生物质衍生磁性碳基复合材料的制备及其吸波性能

强荣1,2(), 冯帅博1, 李婉莹1, 尹琳芝1, 马茜1, 陈博文1, 陈熠1   

  1. 1.中原工学院 纺织学院, 河南 郑州 450007
    2.纺织服装产业河南省协同创新中心, 河南 郑州 450007
  • 收稿日期:2021-09-27 修回日期:2021-11-04 出版日期:2022-01-15 发布日期:2022-01-28
  • 作者简介:强荣(1989—),女,讲师,博士。主要研究方向为碳纤维基电磁波吸收材料/织物的开发。E-mail: casey2009@126.com
  • 基金资助:
    国家自然科学基金项目(51902359);河南省重点研发与推广专项资助项目(202102210017);中国纺织工业联合会科技指导性项目(2021045);中原工学院青年骨干教师项目(2020XQG02)

Biomass-derived magnetic carbon composites towards microwave absorption

QIANG Rong1,2(), FENG Shuaibo1, LI Wanying1, YIN Linzhi1, MA Qian1, CHEN Bowen1, CHEN Yi1   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan 450007, China
  • Received:2021-09-27 Revised:2021-11-04 Published:2022-01-15 Online:2022-01-28

摘要:

为响应国家碳中和、碳达峰目标,解决磁性碳基复合材料制备方法繁杂、能耗高、环境不友好等问题,提出生物质衍生法制备碳基吸波材料的新策略。通过选取香菇为原料,铁盐为金属源,经吸附得到铁/香菇前驱体,后经高温煅烧得到Fe/Fe4N/C复合材料,对材料的相结构、微观形貌、热稳定性、磁特性等理化性质进行表征,分析其吸波性能。研究结果表明:随煅烧温度升高,Fe/Fe4N/C复合材料中磁性纳米粒子结晶性增强,Fe4N含量增加,材料的矫顽力和饱和磁化强度降低;煅烧温度有助于碳组分由无定形碳向微晶石墨转变,碳组分石墨化程度升高;当温度为700 ℃时,Fe/Fe4N/C复合材料的吸波性能最佳,厚度为4 mm时,有效吸收带宽可达6.64 GHz (4.00~10.64 GHz)。研究结果将为磁性碳基吸波材料的合成提供借鉴,继而促进生物质衍生法的推广应用。

关键词: 生物质衍生法, 碳基复合材料, 磁性, 吸波性能

Abstract:

In response to the national carbon neutrality and carbon emission peak target and in order to solve the potential preparation problem of magnetic carbon composite, it proposed a new biomass-derived strategy for the preparation of carbon-based microwave absorption composites. The iron/mushroom precursor was obtained by absorbing iron ions, where mushrooms acted as the raw material and iron salt severed as metal source. The Fe/Fe4N/C composites were acquired by controlled high-temperature pyrolysis, and the phase structure, morphology, thermal stability, magnetic stability, physiochemical properties and microwave absorption performance of composites were analyzed and discussed. It was proved that the increased pyrolysis temperature would improve the crystallinity of magnetic nanoparticles, and that the increases in Fe4N content would induce the decrease of coercivity and saturation magnetization simultaneously. The high pyrolysis temperature was conductive to the transformation from amorphous carbon to microcrystalline graphite,inducing the increased degree of graphitization degree of carbon components. The Fe/Fe4N/C composite pyrolyzed at 700 ℃ was regarded as the best microwave absorber. With a composite thickness being 4 mm, the effective bandwidth of microwave that could be absorbed reached to 6.64 GHz, from 4.00 to 10.64 GHz. The appropriate impedance matching and synergistic enhancement of dielectric loss and magnetic loss were considered to be responsible for the intensified microwave absorption. It is believed that the research provides a reference for the preparation of magnetic carbon microwave absorbers, and promotes the popularization and application of biomass-derived method.

Key words: biomass-derived method, carbon composites, magnetic, microwave absorption performance

中图分类号: 

  • O613.71

图1

Fe/Fe4N/C复合材料的制备流程图"

图2

Fe/Fe4N/C复合材料的物相和形貌"

图3

Fe/Fe4N/C复合材料的分析图"

图4

Fe/Fe4N/C复合材料的磁滞曲线图"

图5

Fe/Fe4N/C复合材料的介电常数与复磁导率图"

图6

Fe/Fe4N/C复合材料的介电损耗角正切值变化图"

图7

Fe/Fe4N/C复合材料的磁损耗角正切值变化图"

图8

Fe/Fe4N/C复合材料的二维反射损耗图"

图9

Fe/Fe4N/C复合材料的衰减因子曲线图"

图10

Fe/Fe4N/C复合材料的阻抗匹配因子图"

[1] GU W, SHENG J, HUANG Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13, 102:1-4.
[2] LIU P, GAO S, LIU X, et al. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials[J]. Composites Part B: Engineering, 2020, 192:107992.
doi: 10.1016/j.compositesb.2020.107992
[3] WU N, HU Q, WEI R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects[J]. Carbon, 2021, 176:88-105.
doi: 10.1016/j.carbon.2021.01.124
[4] LI T, ZHI D, CHEN Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption[J]. Nano Research, 2020, 13(2): 477-484.
doi: 10.1007/s12274-020-2632-0
[5] QIANG R, DU Y, WANG Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98:599-606.
doi: 10.1016/j.carbon.2015.11.054
[6] YANG M, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon, 2020, 161:517-527.
doi: 10.1016/j.carbon.2020.01.073
[7] LIU P, GAO S, WANG Y, et al. Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers[J]. Carbon, 2021, 173:655-666.
doi: 10.1016/j.carbon.2020.11.043
[8] QAING R, DU Y, ZHAO H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3:13426-13434.
doi: 10.1039/C5TA01457C
[9] LIU D, QIANG R, DU Y, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 514:10-20.
doi: 10.1016/j.jcis.2017.12.013
[10] QIANG R, DU Y, CHEN D, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681:384-393.
doi: 10.1016/j.jallcom.2016.04.225
[11] GUAN H, WANG Q, WU X, et al. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials[J]. Composites Part B: Engineering, 2021, 207:108562.
[12] LEI L, WANG Y, ZHANG Z, et al. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts[J]. ACS Catalysis, 2020, 10(15): 8788-8814.
doi: 10.1021/acscatal.0c01900
[13] WANG H, MENG F, LI J, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption[J]. ACS Sustain Chem Eng, 2018, 6(9): 11801-11810.
doi: 10.1021/acssuschemeng.8b02089
[14] GOU G, MENG F, WANG H, et al. Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption[J]. Nano Res, 2019, 12(6): 1423-1429.
doi: 10.1007/s12274-019-2376-x
[15] QIANG R, FENG S, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. Journal of Colloid and Interface science, 2021, 606:406-423.
doi: 10.1016/j.jcis.2021.07.144
[16] QIANG R, FENG S, CHEN Y, et al. Porous and flake-like gamma-Fe4N@iron oxides with enhanced microwave absorption performance[J]. Ceramics International 2021, 47:8315-8321.
doi: 10.1016/j.ceramint.2020.11.193
[17] BHATTACHARYYA S. Iron nitride family at reduced dimensions: a review of their synjournal protocols and structural and magnetic properties[J]. Journal of Physical Chemistry C, 2015, 119:1601-1622.
doi: 10.1021/jp510606z
[1] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[2] 李昌龄, 王文聪, 华东, 周建平, 阚建兴, 王鸿博. 锦纶基磁性纤维的制备及其性能[J]. 纺织学报, 2019, 40(11): 26-31.
[3] 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102.
[4] 袁嫣红 徐文炜 彭来湖. 基于Ansys的磁保持电磁选针器瞬态仿真[J]. 纺织学报, 2018, 39(12): 124-130.
[5] 杨清玉 李凤艳 邱芳 刘雍. 有氧条件下四氧化铁纳米颗粒的制备与表征[J]. 纺织学报, 2016, 37(08): 7-11.
[6] 丁志荣 张琰卿 温娇 郝瑞莉 高阳. 绒面吸波织物的制备及其吸波性能[J]. 纺织学报, 2015, 36(10): 44-48.
[7] 吴菲非 于高杰 陈雁. 磁性纤维针织物表面磁场的分布[J]. 纺织学报, 2014, 35(8): 32-0.
[8] 温娇 丁志荣 张琰卿 邹亚玲 郝瑞莉. 吸波涂层复合面料的制备及其吸波性能[J]. 纺织学报, 2014, 35(5): 61-0.
[9] 吴菲非 于高杰 陈雁. 磁性纤维含量对针织面料服用性能的影响[J]. 纺织学报, 2014, 35(3): 27-0.
[10] 白刚 刘艳春 李凤艳 钱红飞. 磁性复合粒子固定化葡萄糖氧化酶的制备[J]. 纺织学报, 2014, 35(3): 62-0.
[11] 于高杰 吴菲非 左华丽 陈雁. 磁性针织物表面磁性测试与评价[J]. 纺织学报, 2014, 35(1): 57-0.
[12] 荆妙蕾 李金. 基于灰聚类方法的磁性纤维混纺织物湿舒适性评估[J]. 纺织学报, 2013, 34(5): 35-40.
[13] 吴隆. 用磁性磨料对钢领进行光整加工的研究[J]. 纺织学报, 2004, 25(04): 77-78.
[14] 齐鲁;叶建忠;李和玉;邹建柱. 磁性纤维的实验研究[J]. 纺织学报, 2004, 25(01): 68-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .