纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 68-74.doi: 10.13475/j.fzxb.20210902107

• 纺织工程 • 上一篇    下一篇

形状记忆复合编织圆管的制备及其热致回复性能

张威, 蒋喆, 徐琪, 孙宝忠()   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2021-09-08 修回日期:2022-04-30 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 孙宝忠
  • 作者简介:张威(1988— ),男,讲师,博士。主要研究方向为纺织复合材料力学及智能复合材料。
  • 基金资助:
    国家自然科学基金项目(51675095);上海市青年科技英才扬帆计划项目(19YF1401200)

Fabrication and thermal-activated recovery properties of shape memory composite braided circular tubes

ZHANG Wei, JIANG Zhe, XU Qi, SUN Baozhong()   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-09-08 Revised:2022-04-30 Published:2022-11-15 Online:2022-12-26
  • Contact: SUN Baozhong

摘要:

为分析编织角、回复温度对形状记忆编织圆管力学性能与形状回复性能的影响,采用改进的双螺杆挤出工艺制备连续碳纤维/形状记忆聚氨酯复合长丝,通过二维编织技术制备得到编织角为15°、30°、45°、60°、75°的圆管,对比分析了其径向支撑力和形状回复率。结果表明:制备的复合长丝中连续碳纤维被形状记忆聚氨酯均匀包覆,且基本位于复合长丝中心位置;编织圆管的径向支撑力与编织角大小成正比关系,编织角为45°时圆管的形状回复率最高,编织角度越接近45°形状回复率越高;回复温度对形状记忆性能有一定的影响,回复温度越高圆管的回复速率越快,形状回复率越大;该圆管结构具有优异的形状回复率,最高可达96%。

关键词: 编织圆管, 形状记忆, 复合长丝, 热驱动, 编织角

Abstract:

To investigate the effects of braiding angle and recovery temperature on mechanical properties and shape recovery performances of braided circular tube composites, continuous carbon fiber/shape memory polyurethane composite filament was prepared using the modified twin-screw extrusion technique, and the braided circular tubes with different braiding angles were obtained by 2-D braiding. The braiding angles included 15°, 30°, 45°, 60° and 75°, and the radial strength and shape recovery performances of braided circular tubes were compared. The results show that continuous carbon fiber is evenly coated by shape memory polyurethane and in the center of composite filament. Radial force of the circular tube is proportional to the braiding angle and the closer the braiding angle is to 45°, the higher the shape recovery ratio will be. Recovery temperature has the effect on shape memory properties. As the recovery temperature increases, recovery rate and recovery ratio are both enhanced. The braided circular tube structure demonstrated a shape recovery ratio of up to 96%.

Key words: braided circular tube, shape memory, composite filament, thermal-activated, braiding angle

中图分类号: 

  • TS101.2

图1

CCF/SMPU复合长丝制备流程"

图2

菱形编织结构及样品截面图"

表1

编织参数"

编织角度/(°) 锭子角速度/(rad·s-1) 芯轴牵引速度/(mm·s-1)
15 0.32 8.96
30 0.32 4.16
45 0.32 2.40
60 0.32 1.38
75 0.32 0.64

图3

不同角度的编织圆管试样"

图4

形状记忆性能测试模型"

图5

CCF/SMPU复合长丝横截面形态(×200)"

图6

CCF/SMPU复合长丝热力学分析"

图7

形状记忆长丝拉伸力学性能测试"

图8

CCF/SMPU编织圆管径向压缩载荷-位移曲线"

图9

60 ℃时热驱动形状回复过程"

图10

编织圆管热致形状回复率与时间、编织角及温度的关系"

[1] XIA Y L, HE Y, ZHANG F H, et al. A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33(6):2000713.
[2] MICHAL B T, SPENCER E J, ROWAN S J. Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer[J]. ACS Applied Materials & Interfaces, 2016, 8(17): 11041-11049.
[3] XU Z, DING C, WEI D W, et al. Electro and light-active actuators based on reversible shape memory polymer composites with segregated conductive networks[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30332-30340.
[4] ZE Q J, KUANG X, WU S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4):1906657.
doi: 10.1002/adma.201906657
[5] HERATH H, EPAARACHCHI J A, ISLAM M M, et al. Structural performance and photothermal recovery of carbon fibre reinforced shape memory polymer[J]. Composites Science and Technology, 2018, 167: 206-214.
doi: 10.1016/j.compscitech.2018.07.042
[6] ARIANO P, PAOLO D, LOMBARDI M, et al. Polymeric materials as artificial muscles: an overview[J]. Journal of Applied Biomaterials & Functional Materials, 2015, 13(1): 1-9.
[7] KIM W C, LIM K R, KIM W T, et al. Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor[J]. Progress in Materials Science, 2021. DOI: 10.1016/j.pmatsci.2021.100855.
doi: 10.1016/j.pmatsci.2021.100855
[8] WANG L, ZHANG F H, LIU Y J, et al. Shape memory polymer fibers: materials, structures, and appli-cations[J]. Advanced Fiber Materials, 2022, 4(1): 5-23.
doi: 10.1007/s42765-021-00073-z
[9] SHAYAN M, CHUN Y. An overview of thin film nitinol endovascular devices[J]. Acta Biomaterialia, 2015, 21: 20-34.
doi: 10.1016/j.actbio.2015.03.025 pmid: 25839120
[10] PILATE F, TONCHEVA A, DUBOIS P, et al. Shape-memory polymers for multiple applications in the materials world[J]. European Polymer Journal, 2016: 268-294.
[11] 赵建宝, 吴雪莲, 戈晓岚, 等. 形状记忆聚合物及其应用前景[J]. 材料导报, 2015, 29(21): 75-80.
ZHAO Jianbao, WU Xuelian, GE Xiaolan, et al. Shape memory polymer and its application prospects[J]. Materials Reports, 2015, 29(21): 75-80.
[12] WANG F, ZHANG C, WAN X. Carbon nanotubes-coated conductive elastomer: electrical and near infrared light dual-stimulated shape memory, self-healing, and wearable sensing[J]. Industrial & Engineering Chemistry Research, 2021, 60(7):2954-2961.
doi: 10.1021/acs.iecr.0c06050
[13] REN T, ZHU G, LIU Y, et al. An investigation on electro-induced shape memory performances of CE/EP/CB/SCF composites applied for deployable structure[J]. Journal of Polymer Engineering, 2020, 40(3):203-210.
doi: 10.1515/polyeng-2019-0212
[14] CHEN H J, ZHANG F H, SUN Y, et al. Electrothermal shape memory behavior and recovery force of four-dimensional printed continuous carbon fiber/polylactic acid composite[J]. Smart Materials and Structures, 2021. DOI: 10.1088/1361-665x/abd912.
doi: 10.1088/1361-665x/abd912
[15] SUN Y, CHEN H J, YIN H, et al. A flexible, high-strength, conductive shape memory composite fabric based on continuous carbon fiber/polyurethane yarn[J]. Smart Materials and Structures, 2020. DOI: 1088/1361-665x/abqf4a.
doi: 1088/1361-665x/abqf4a
[16] ZHU J T, FANG G Q, CAO Z L, et al. A self-folding dynamic covalent shape memory epoxy and its continuous glass fiber composite[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5276-5281.
doi: 10.1021/acs.iecr.8b00222
[17] YIN L K, WANG S X, ZUO S Y. Water-jet outer sheath with braided shape memory polymer tubes for upper gastrointestinal tract screening[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(6):1944.
[18] ZHANG Y, CHEN K, LIU H, et al. A study of a biodegradable braided Mg stent for biliary recon-struction[J]. Journal of Materials Science, 2020, 55(36): 17170-17182.
doi: 10.1007/s10853-020-05289-9
[19] ION R, LUCULESCU C, CIMPEAN A, et al. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy[J]. Mater Sci Eng C: Mater Biol Appl, 2016, 62: 686-691.
doi: 10.1016/j.msec.2016.02.031
[20] SETAREH B, SHADI H, HOSSEIN A, et al. Cardiovascular stents: overview, evolution, and next generation[J]. Progress in Biomaterials, 2018, 7: 175-205.
doi: 10.1007/s40204-018-0097-y pmid: 30203125
[21] 李帅, 张均, 陈建君, 等. 形状记忆聚氨酯泡沫的制备与性能研究[J]. 聚氨酯工业, 2019, 34(2): 25-27.
LI Shuai, ZHANG Jun, CHEN Jianjun, et al. Preparation and properties of shape memory polyurethane form[J]. Polyurethane Industry, 2019, 34(2): 25-27.
[1] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[2] 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(05): 50-57.
[3] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[4] 王丽君 卢业虎 王帅 马妮妮. 形状记忆合金尺寸对消防服面料防护性能的影响[J]. 纺织学报, 2018, 39(06): 113-118.
[5] 吴杰伟 孙志宏 郁强 陈燕婷 邱夷平 周其洪 陈晓川. 等覆盖率变径编织方法[J]. 纺织学报, 2018, 39(04): 54-62.
[6] 马妮妮 卢业虎 戴宏钦. 形状记忆材料在功能防护服中的应用[J]. 纺织学报, 2018, 39(04): 170-174.
[7] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
[8] 李丹丹 权利军 金肖克 田伟 祝成炎. 氨纶与双组分复合长丝/棉包芯纱的拉伸弹性[J]. 纺织学报, 2017, 38(05): 31-36.
[9] 王晓明 邹婷 李超婧 王璐. 基于编织点起始位置及牵拉速度变化的编织角预测模型[J]. 纺织学报, 2015, 36(09): 28-33.
[10] 曹海建 钱坤 徐文新 李雅 臧红. 三维全五向编织复合材料的压缩性能[J]. 纺织学报, 2013, 34(8): 68-0.
[11] 全琼瑛 胡金莲 吕晶. 高紧度形状记忆纤维/棉机织物的记忆性能[J]. 纺织学报, 2013, 34(7): 57-61.
[12] 曹艳. 自卷曲复合长丝PET/PTT纺丝工艺及性能[J]. 纺织学报, 2011, 32(2): 6-10.
[13] 刘晓霞. 形状记忆整理织物的微拉伸增强探析[J]. 纺织学报, 2010, 31(6): 106-109.
[14] 金关秀;胡金莲;吕晶;谭冬宜. 结构参数对温敏形状记忆机织物记忆性能的影响[J]. 纺织学报, 2010, 31(3): 40-44.
[15] 徐 磊;王 瑞;张淑洁. Ni-Ti形状记忆合金纤维相变的电阻特性[J]. 纺织学报, 2010, 31(3): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .