Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 133-141.doi: 10.13475/j.fzxb.20180805309

• Comprehensive Review • Previous Articles     Next Articles

Research progress in preparation of high-efficiency air filter materials by electrospinning

LIU Chaojun1,2, LIU Junjie1(), DING Yike2, ZHANG Jianqing2, HUANG Luying2   

  1. 1. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin 300072, China
    2. Zhejiang Goldensea Environment Technology Group, Shaoxing, Zhejiang 311817, China
  • Received:2018-08-23 Revised:2019-01-29 Online:2019-06-15 Published:2019-06-25
  • Contact: LIU Junjie E-mail:jjliu@tju.edu.cn

Abstract:

In order to better prepare high-efficiency air filter materials by electrospinning and promote the industrial application of electrospun nanofiber membranes in the field of high-efficiency air filtration, a comprehensive review to the recent studies about the preparation of high-efficiency air filter materials with low-resistance and functional properties were reviewed. The three-dimensional high-efficiency filter material with spherical and spider-web like structures, the electret-enhanced filter material, and the functional filter material with high temperature resistance, antibacterial and degradable characteristics were introduced emphatically. The research progress were reviewed, the problems and deficiencies in the existing research were analyzed and discussed. According to the research, the electrospun nanofiber membrane has advantages of simple and efficient production process, controllable morphology, high separation precision and wide applicability. The development and application prospect in the field of high efficiency air filtration is very broad.

Key words: electrospinning, air filtration, nanofiber, high-efficiency filter material

CLC Number: 

  • TQ028.2

Fig.1

Schematic diagram illustrating fabrication of PAN three-dimensional membrane via free surface electrospinning"

Fig.2

SEM images of porous spherical PLA three-dimensional membrane. (a) Surface morphology (×1 000); (b)High-magnified SEM image of surface(×8 000)"

Fig.3

SEM images of PA-66/chloride salt NFN membranes. (a) No chloride salt; (b) KCl; (c) FeCl3; (d) MgCl2; (e) CaCl2; (f) BaCl2"

Fig.4

Optical images and SEM images of γ-alumina membrane calcined at 900 ℃ after crimping and bending several times. (a) Optical images;(b) SEM images"

Fig.5

Optical image of drawing a CNT membrane from super aligned CNT arrays"

[1] OBERDORSTER G, UTELL M J. Ultrafine particles in the urban air:to the respiratory tract-and beyond[J]. Environmental Health Perspectives, 2002,110(8):440-441.
[2] SONG Y, XIE Z S, ZENG L, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006,40(8):1526-1537.
[3] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2014,6:6205.
doi: 10.1038/ncomms7205 pmid: 25683688
[4] DAVID Y H, CHEN S C, ZUO Z L. PM2.5 in China:measurements,sources,visibility and health effects,and mitigation[J]. Particuology, 2014,13(2):1-26.
[5] PETERS A, DOCKERY D W, MULLER J E, et al. Increased particulate air pollution and the triggering of myocardial infarction[J]. Circulation, 2001,103(23):2810-2815.
doi: 10.1161/01.cir.103.23.2810 pmid: 11401937
[6] BRAUER M, AVILA-CASADO C, FORTOUL T I, et al. Air pollution and retained particles in the lung[J]. Environmental Health Perspectives, 2001,109(10):1039-1043.
doi: 10.1289/ehp.011091039 pmid: 11675269
[7] HAMRA G B, GUHA N, COHEN A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis.[J]. Environ Health Perspect, 2014,122(9):906-911.
doi: 10.1289/ehp/1408092 pmid: 24911630
[8] KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008,151(2):362.
doi: 10.1016/j.envpol.2007.06.012 pmid: 17646040
[9] 伯奇斯特.C.A, 卡恩.J.E, 福勒.A.B. 空气净化手册[M]. 时友人,译. 北京:原子能出版社, 1981: 46.
BIRCHSTER C A, KAHN J E, FOWLER A B. Air Pu-rification Manual [M]. SHI Youren, Translating. Beijing: Atomic Energy Press, 1981: 46.
[10] KO F, WAN Y. Introduction to Nanofiber Mate-rials[M]. Cambridge: Cambridge University Press, 2014: 44-48.
[11] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics, 1995,35(2/3):151-160.
[12] LI D, XIA Y. Electrospinning of Nanofibers: Reinventing the Wheel[J]. Advanced Materials, 2010,16(14):1151-1170.
[13] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015,44(3):790-814.
doi: 10.1039/c4cs00226a pmid: 25408245
[14] PARK H S, PARK Y O. Filtration properties of electrospun ultrafine fiber webs[J]. Korean Journal of Chemical Engineering, 2005,22(1):165-172.
[15] SAWHNEY A, CONDON B, SINGH K, et al. Modern applications of nanotechnology in textiles[J]. Textile Research Journal, 2008,78(8):731-739.
[16] QIN X H, WANG S Y. Filtration properties of electrospinning nanofibers[J]. Journal of Donghua University, 2007,102(2):1285-1290.
[17] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 8-20.
DING Bin, YU Jianyong. Electrospinning and Nano-fiber[M]. Beijing: China Textile & Apparel Press, 2011: 8-20.
[18] NAKATA K, KIM S H, OHKOSHI Y, et al. Electrospinning of poly (ether sulfone) and evaluation of the filtration efficiency[J]. Fiber, 2007,63(12):307-312.
[19] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010,41(2):230-236.
[20] AHN Y C, PARK S K, KIM G T, et al. Development of high efficiency nanofilters made of nanofibers[J]. Current Applied Physics, 2006,6(6):1030-1035.
[21] CHRISTANTI Y, WALKER L M. Surface tension driven jet break up of strain-hardening polymer solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2001,100(1):9-26.
[22] GAO H, YANG Y, AKAMPUMUZA O, et al. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science Nano, 2017,4(4):864-875.
[23] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtra-tion[J]. Journal of Colloid & Interface Science, 2015,441:121-129.
pmid: 25499733
[24] DING B, LI C R, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006,17(15):3685-3694.
[25] WANG X, DING B, YU J, et al. Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing[J]. Nanoscale, 2011,3(3):911-915.
doi: 10.1039/c0nr00783h pmid: 21152536
[26] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015,36(11):6-11.
WANG Xiaoliang, FENG Xuewei, PAN Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015,36(11):6-11.
[27] WANG N, WANG X, DING B, et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtra-tion[J]. Journal of Materials Chemistry, 2011,22(4):1445-1452.
[28] 汪策. 纳米纤维多孔膜的制备及其在空气过滤中的应用[D]. 上海:东华大学, 2015: 29-43.
WANG Ce. Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015: 29-43.
[29] ZHANG S, LIU H, YU J, et al. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016,4(16):6149-6157.
[30] WANG N, YANG Y J, SALEM S. ALDEYAB, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter[J]. Journal of Materials Chemistry A, 2015,3(47):23946-23954.
[31] ZHANG S, LIU H, ZUO F, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter[J]. Small, 2017,13(10):1603151.
[32] TSAI P P, SCHREUDER-GIBSON H, GIBSON P. Different electrostatic methods for making electret fil-ters[J]. Journal of Electrostatics, 2002,54(3):333-341.
[33] SAELIM H, TANTHAPANICHAKOON W, KANAOKA C. Structural improvement to quadruple service life of a high-efficiency electret filter[J]. Science & Technology of Advanced Materials, 2016,6(3):307-311.
[34] THAKUR R, DAS D, DAS A. Optimization study to improve filtration behaviour of electret filter media[J]. Journal of the Textile Institute, 2016,107(11):1456-1462.
[35] WANG S, ZHAO X, YIN X, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. Acs Applied Materials & Interfaces, 2016,8(36):23985-23994.
pmid: 27552028
[36] LI X, WANG N, FAN G, et al. Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles[J]. J Colloid Interface Sci, 2015,439:12-20.
doi: 10.1016/j.jcis.2014.10.014 pmid: 25463170
[37] 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海:东华大学, 2017: 92-103.
ZHAO Xinglei. Tunable fabrication of nanofiberous materials with high-efficiency and low-resistance and their application in air filtration[D]. Shanghai: Donghua University, 2017: 92-103.
[38] 张杰. 电气石改性熔喷过滤材料的工艺与效能的研究[D]. 上海:东华大学, 2012: 31-43.
ZHANG Jie. Studies on technology and efficiency of tourmaline modified melt-blown filter material[D]. Shanghai: Donghua University, 2012: 31-43.
[39] LI W J, LAURENCIN C T, CATERSON E J, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering.[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010,60(4):613-621.
[40] 徐浩. PSA纳米纤维复合滤材的制备和性能研究[D]. 上海:东华大学, 2017: 27-36.
XU Hao. Preparation and performance research of PSA nanofibers composite filter[D]. Shanghai: Donghua University, 2017: 27-36.
[41] 王成, 姚理荣, 陈宇岳. 芳纶纳米纤维毡/聚苯硫醚高温超过滤材料的制备及其性能[J]. 纺织学报, 2013,34(7):1-4.
WANG Cheng, YAO Lirong, CHEN Yuyue. Preparation and properties of high temperature resistant ultrafiltration aramid nanofiber/PPS composite material[J]. Journal of Textile Research, 2013,34(7):1-4.
[42] YU S, YU H, ZHU M, et al. Development progress of electrospun ceramic fibers[J]. Synthetic Fiber in China, 2010,39(3):5.
[43] WANG Y, LI W, XIA Y, et al. Electrospun flexible self-standing g-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media[J]. Journal of Materials Chemistry A, 2014,2(36):15124-15131.
[44] MAO X, SI Y, CHEN Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. Rsc Advances, 2012,2(32):12216-12223.
[45] MAO X, BAI Y, YU J, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. Journal of the American Ceramic Society, 2016,99(8):2760-2768.
[46] 欧阳玉. 碳纳米管结构研究[D]. 长沙:湖南大学, 2008: 16-17.
OUYANG Yu. Study on the structure of carbon nano-tubes[D]. Changsha: Hunan University, 2008: 16-17.
[47] BACSA R R, LAURENT C, PEIGNEY A, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process[J]. Chemical Physics Letters, 2000,323(5):566-571.
[48] PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001,39(4):507-514.
[49] ZHANG R, WEN Q, QIAN W, et al. Superstrong ultralong carbon nanotubes for mechanical energy sto-rage[J]. Advanced Materials, 2011,23(30):3387-3391.
pmid: 21671453
[50] JIANG K, WANG J, LI Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications[J]. Advanced Materials, 2015,23(9):1154-1161.
doi: 10.1002/adma.201003989 pmid: 21465707
[51] 王倩楠. 高温气体过滤材料的制备及过滤性能的研究[D]. 上海:东华大学, 2017: 89-104.
WANG Qiannan. Synthesis and filtration properties of hot gas filters for removal of ultrafine particles[D]. Shanghai: Donghua University, 2017: 89-104.
[52] 王哲. 多级结构微纳米纤维的结构调控及其空气过滤性能[D]. 苏州:苏州大学, 2017: 86-104.
WANG Zhe. Structure regulation of herarchical micro-/nano-scale fibers and their performance of air fitra-tion[D]. Suzhou: Soochow University, 2017: 86-104.
[53] MOREAU N. Respiratory toxicity of multi-wall carbon nanotubes[J]. Toxicology & Applied Pharmacology, 2005,207(3):221-231.
doi: 10.1016/j.taap.2005.01.008 pmid: 16129115
[54] PULSKAMP K, DIABATÉ S, KRUG H F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants[J]. Toxicology Letters, 2007,168(1):58-74.
doi: 10.1016/j.toxlet.2006.11.001 pmid: 17141434
[55] KIM S J, NAM Y S, RHEE D M, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane[J]. European Polymer Journal, 2007,43(8):3146-3152.
[56] WANG Z, ZHAO R, ZHAO R, et al. A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance[J]. Journal of Nanomaterials, 2016,2016:1-17.
[57] ZHONG Z, XU Z, SHENG T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods[J]. Acs Applied Materials & Interfaces, 2015,7(38):21538-21544.
pmid: 26360532
[58] RUPARELIA J P, CHATTERJEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008,4(3):707-716.
doi: 10.1016/j.actbio.2007.11.006 pmid: 18248860
[59] KANG S, PINAULT M, PFEFFERLE L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2007,23(17):8670-8673.
pmid: 17658863
[60] 马利婵, 王娇娜, 李丽, 等. 静电纺空气过滤用PET/CTS抗菌复合纳米纤维膜的制备[J]. 高分子学报, 2015(2):221-227.
MA Lichan, WANG Jiaona, LI Li, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J].Acta Polymerica Sinica, 2015(2):221-227.
[61] JEONGAN C, BYEONG JOON Y, GWI-NAM B, et al. Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration[J]. Acs Applied Materials & Interfaces, 2015,7(45):25313-25320.
doi: 10.1021/acsami.5b07441 pmid: 26505783
[62] FANG Q, ZHU M, YU S, et al. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials[J]. Materials Science & Engineering B, 2016,214:1-10.
[63] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid & Interface Science, 2015,457:203-211.
pmid: 26188726
[64] WANG C, WU S, JIAN M, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016,9(9):1-8.
[1] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[2] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[3] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[4] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[5] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[6] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[7] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[8] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[9] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[10] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[11] HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, LIU Junjie, HUANG Chen, DING Yike, HONG Hui. Research progress in preparation of hierarchically structured air filter materials by electrospinning [J]. Journal of Textile Research, 2020, 41(06): 174-182.
[12] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[13] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[14] ZHANG Yimin, ZHOU Weitao, HE Jianxin, DU Shan, CHEN Xiangxiang, CUI Shizhong. Fabrication and properties of amidoxime-modified SiO2 / polyacrylonitrile composite fibrous nonwovens [J]. Journal of Textile Research, 2020, 41(05): 25-29.
[15] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!