Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 151-156.doi: 10.13475/j.fzxb.20180702506

• Machinery & Accessories • Previous Articles     Next Articles

Influence of interval distance of double-needle bed warp-knitting machine on yarn demand

XU Yunlong, XIA Fenglin()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-07-10 Revised:2019-03-29 Online:2019-08-15 Published:2019-08-16
  • Contact: XIA Fenglin E-mail:xiafl_622@163.com

Abstract:

In order to solve the yarn fluctuation caused by the interval distance of the double-needle bed warp-knitting machine, the intrinsic correlation of interval distance and the fluctuation of the yarn demand was analyzed. The displacement curves of the knitting needles and the guide needles in the process of forming a double-needle bed warp-knitting machine were tracked by using the KEYENCE VW-6000 dynamic analysis three-dimensional microscope system, the collocation of guide needle and knitting needles was analyzed, and the whole yarn demand fluctuation in the knitting area of the warp-knitting machine was calculated. A geometrical model of the coil parts in the process of the front needle bed knitting loop-forming was established. The function relation between the swing amplitude of guide bar and knocking-over bar was deduced. Then, the linear relation model between the integral yarn-demand fluctuation of the double-needle bed warp-knitting machine and the spacing of the knocking-over bar was obtained. Finally, a kind of movable rod tension bar with double compensation capability was designed, which can effectively reduce the yarn fluctuation during knitting.

Key words: double-needle bed warp-knitting machine, interval distance, yarn-demand, mathematical model, three-dimensional microscope system

CLC Number: 

  • TS184

Fig.1

Displacement curve of loop-forming parts"

Fig.2

Schematic diagram of movement of parts. (a) All crossed knitting needle;(b) Partly crossed knitting needle"

Tab.1

Knitting action of front needle bed and related feature"

角度域/(°) 运动状态
0~30 梳栉后摆,针床上升
30~60 梳栉前摆至原点上方
69~90 梳栉前摆,针前垫纱
90~120 梳栉后摆至原点上方
120~150 梳栉后摆,前针床成圈
150~180 梳栉前摆至原点上方

Fig.3

Yarn demand of spacer layer"

Tab.2

Requirement of yarn in typical position of different spacing"

主轴角度/(°) 需沙量/mm
L1 L2 L3 L4 L5
0 19.05 19.23 19.53 19.92 20.43
30 22.30 22.30 22.30 22.30 22.30
60 19.05 19.23 19.53 19.92 20.43
90 24.00 26.00 28.10 30.00 32.80
120 20.73 22.90 25.52 28.47 31.70
150 30.58 34.3 38.62 43.20 48.26
180 26.00 29.20 32.53 35.90 39.43
210 29.30 32.27 35.3 38.28 41.30
240 26.00 29.20 32.53 35.90 39.43
270 31.00 35.97 41.10 45.98 51.80
300 27.73 32.87 38.52 44.45 50.70
330 37.58 44.27 51.62 59.18 67.26
360 33.00 39.17 45.53 51.88 58.43

Fig.4

Maximum fluctuation of yarn demand in loop-forming region"

Fig.5

Guide-bar swing and path of yarn. (a) Yarn path; (b) Yarn path with guide-bar swinging"

Fig.6

Overall fluctuation demand of yarn demand"

Fig.7

Tension rod of spring piece(a) and principle of compensation (b)"

[1] 曹飞, 熊和金 . 基于DSP的纱线张力检测系统[J]. 电脑编程技巧与维护, 2008(14):71-73.
CAO Fei, XIONG Hejin . Yarn tension measuring system based on DSP[J]. Computer Programming Skills & Maintenance, 2008(14):71-73.
[2] 胡瑜, 刘行, 缪旭红 . 经编纱线动态张力评价指标[J]. 纺织学报, 2018,39(2):68-72.
HU Yu, LIU Xing, MIAO Xuhong . Evaluation index of dynamic tension of warp knitting yarn[J]. Journal of Textile Research, 2018,39(2):68-72.
[3] 陈红霞 . 经编电子送经系统的研究与开发[D]. 无锡:江南大学, 2005: 15.
CHEN Hongxia . Research and development of warp-knitted electronic delivery system[D]. Wuxi: Jiangnan University, 2005: 15.
[4] 张灵婕, 缪旭红 . 经编张力补偿装置对经纱张力的影响[J]. 纺织学报, 2016,37(11):126-129.
ZHANG Lingjie, MIAO Xuhong . Effect of warp knitting tension compensator on warp yarn tension[J]. Journal of Textile Research, 2016,37(11):126-129.
[5] 陈跃华, 冯勋伟, 姜艺 . 编织重经织物时经纱张力分析[J]. 中国纺织大学学报, 1996(2):88-93.
CHEN Yuehua, FENG Xunwei, JIANG Yi . Analysis of warp tension when knitting heavy warp fabric[J]. Journal of China Textile University, 1996 ( 2):88-93.
[6] 冯勋伟 . 经编机经纱张力分析及合理上机条件探讨[J]. 纺织学报, 1989,10(7):25-28.
FENG Xunwei . Analysis of warp yarn tension of warp knitting machine and discussion on reasonable loading condition[J]. Journal of Textile Research, 1989,10(7):25-28.
[7] LIU Xing, MIAO Xuhong . Analysis of yarn tension based on yarn demand variation on a tricot knitting ma-chine[J]. Textile Research Journal, 2016,87(4):487-497.
doi: 10.1177/0040517516632473
[8] 宗平生 . 经编送经研究[J]. 针织工业, 1980(4):23-31.
ZONG Pingsheng . Study on warp knitting[J]. Knitting Industries, 1980(4):23-31.
[9] 缪旭红, 李筱一 . 我国双针床经编技术及产品最新进展[J]. 纺织导报, 2015(7):30-34.
MIAO Xuhong, LI Xiaoyi . The latest development of double needle bed warp knitting technology and products in China[J]. China Textile Leader, 2015 ( 7):30-34.
[10] 刘建邦 . 双针床多梳经编机成圈机构的研究与分析[D]. 杭州:浙江理工大学, 2015: 8-11.
LIU Jianbang . The research and analysis of the ring-forming mechanism of multi-comb warp knitting machine in double-needle bed[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 8-11.
[11] 王鸿博, 高卫东 . 现代整经技术及其发展趋势[J]. 纺织导报, 2004(3): 4-6, 10-12.
WANG Hongbo, GAO Weidong . Modern warping technology and its development trend[J]. China Textile leader, 2004(3): 4-6, 10-12.
[1] XIANG Zhong, WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong. Research progress in detection of hydrogen peroxide concentration [J]. Journal of Textile Research, 2020, 41(10): 197-204.
[2] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[3] . Arrangement of garment production line by particle swarm algorithm [J]. Journal of Textile Research, 2018, 39(10): 120-124.
[4] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[5] . Modeling and tensile performance of negative Poissin's ratio warp-knitted spacer structures based on mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 59-65.
[6] . Out-of–plane deformation of tight woven fabric under high air pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 49-55.
[7] . Automatic construction of digital woven fabric using sequence yarn images [J]. Journal of Textile Research, 2016, 37(3): 35-40.
[8] . Weaving techniques and mathematical model of techniques for patterned simple gauze of Song dynasty [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 42-47.
[9] . Mathematical modeling of air friction duag of clothing fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 50-55.
[10] . Novel cut pile mechanism on tufting carpet loom [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 118-123.
[11] . Mechanical properties of electrospun silk fibroin/poly (ε-caprolactone) nanofibrous membranes under biaxial tensile loads with different tensile rates [J]. Journal of Textile Research, 2015, 36(06): 18-23.
[12] . Mechanical properties of electrospun aligned silk fibroin/poly(ε-caprolactone) nanofibrous membranes under biaxial tensile loads [J]. Journal of Textile Research, 2015, 36(04): 31-36.
[13] . CAD design method for small- pattern dobby fabric weaves with determined harness numbers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 140-0.
[14] . Establishment of mathematical model of round collar [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 102-0.
[15] Jun-Hong YAO. Optical signal detection of foreign fiber based on H∞ filter [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 125-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 19 -20 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1984, 5(09): 30 -32 .
[3] WEI Jing. Rise tendency change of the turn collar[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 103 -105 .
[4] LI Wei-feng . Research and manufacture of geomembrane waterpower test instrument based on RS-485 bus[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 107 -109 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(10): 19 -20 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(05): 27 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2002, 23(06): 10 -11 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(05): 33 -34 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1997, 18(04): 46 -48 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(06): 59 -61 .