Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 162-168.doi: 10.13475/j.fzxb.20190806707

• Academic Salon Column for New Insight of Textile Science and Technology: Preparation Technology and • Previous Articles     Next Articles

Axial tensile properties of three-dimensional woven composites with variant structure

LIU Junling1,2, SUN Ying1,2, CHEN Li1,2()   

  1. 1. Key Laboratory of Advanced Textile Composites, Tianjin and Ministry of Education, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-08-26 Revised:2019-09-15 Online:2019-12-15 Published:2019-12-18
  • Contact: CHEN Li E-mail:chenli@tjpu.edu.cn

Abstract:

Aiming at the problem that adding yarns or cutting yarns method will cause local variation of the interlace structure of the three-dimensional (3-D) woven preform, which will further affect the mechanical properties of the composite, four types of 3-D woven quartz fiber resin matrix composites were manufactured by adding yarns and cutting yarns in combination. The yarn path of the adding and cutting yarns regions were established by observation and topological method, and the digital image correlation technology was adopted to study the full field longitudinal strain change during the stretching process. The experiment results show that the samples with added and cut yarns have higher strength and modulus retention of more than 93.0% and 88.0% respectively, and have no significant difference in elongation at break. The mechanical response and fracture failure mode during the tensile test are consistent with the samples without the added and cut yarns. The strain map indicates that the damage oneset at the interlacing point, and the high strain of the samples with added and cut yarns was concentrated at the point of adding and cutting yarns, which is correspondent to the resin-rich low strain region.

Key words: three-dimensional woven composite, variant structure, adding yarn, cutting yarn, tensile property

CLC Number: 

  • TB332

Tab.1

Structure parameters of samples"

类别 试样
编号
经纱 衬经纱 纬纱 衬纬纱
层数 线密
密度/
(根·cm-1)
层数 线密
密度/
(根·cm-1)
层数 线密
密度/
(根·cm-1)
层数 线密
密度/
(根·cm-1)
层层正交角联锁 A4 4 190 tex×2 10 190 tex×2 5 190 tex×3 4.2 190 tex×3
衬经层层正交角联锁 A4P 4 190 tex×2 5 4 190 tex×2 5 5 190 tex×3 4.2 190 tex×3
层层斜交角联锁 A4T 4 190 tex×2 10 190 tex×2 5 190 tex×3 2.1 3 190 tex×3 2.1
衬经层层斜交角联锁 A4PT 4 190 tex×2 5 4 190 tex×2 5 5 190 tex×3 2.1 3 190 tex×3 2.1

Fig.1

Arrangements of warp yarns"

Fig.2

Surface morphology and structure of performs"

Tab.2

Offset angle of warp"

试样
编号
次数 经纬纱夹角-90°/(°)
减纱点左 减纱点右 加纱点左 加纱点右
A4-J 第1次 17.8 19.7 18.7 16.4
第2次 12.2 12.6 12.1 11.6
A4T-J 第1次 5.5 5.8 5.3 4.2
第2次 2.7 3.7 3.1 2.4
A4P-J 第1次 16.7 17.5 17.2 17.1
第2次 6.1 5.3 6.3 5.6
A4PT-J 第1次 6.4 7.4 6.7 5.6
第2次 3.4 3.4 3.5 3.1

Fig.3

DIC combination of tensile test device"

Tab.3

Tensile test results of 8 specimens"

试样
编号
拉伸模量/GPa 拉伸强度/MPa 泊松比
经向 CV值/% 经向 CV值/% 经向 CV值/%
A4 17.22 6.3 279.09 4.20 0.113 10.6
A4-J 16.39 4.6 260.98 8.0 0.116 7.8
A4T 24.33 4.7 405.07 5.4 0.105 24.3
A4T-J 21.49 5.2 389.48 6.2 0.145 12.2
A4P 21.64 7.2 400.27 5.7 0.134 17.8
A4P-J 19.81 6.2 379.08 4.6 0.127 16.5
A4PT 22.56 4.0 415.63 6.0 0.103 22.3
A4PT-J 20.56 6.1 392.45 4.1 0.097 14.5

Fig.4

Stress-strain curves of 8 specimens. (a)Without adding or cutting yarn;(b)With adding or cutting yarn"

Fig.5

Longitudinal strain distributions of 8 specimens at different strain level"

Fig.6

Fracture morphologie of 8 specimens"

[1] TONG L, MOURITZ A P, BANNISTER M K. 3D Fibre Reinforced Polymer Composites[M]. Amsterdam: Elsevier, 2002: 107-136.
[2] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(S1):80-87.
CHEN Li, ZHAO Shibo, WANG Xinmiao. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2018(S1):80-87.
[3] 刘兆麟, 程灿灿, 刘丽芳, 等. 变截面三维编织复合材料减纱工艺与弯曲性能[J]. 复合材料学报, 2011,28(6):118-124.
LIU Zhaolin, CHENG Cancan, LIU Lifang, et al. Reducing-yarn technique and flexural properties of 3D braided composites with tapered cross-section[J]. Acta Materials Composite Sinica, 2011,28(6):118-124.
[4] 焦亚男, 李嘉禄, 付景韫. 变截面三维编织预制件的增减纱机制[J]. 纺织学报, 2007,28(1):44-47.
JIAO Yanan, LI Jialu, FU Jingyun. Methodology research on 3-D braided preform with changed-sections[J]. Journal of Textile Research, 2007,28(1):44-47.
[5] 郑占阳, 贺辛亥, 杨超群, 等. 变截面三维编织技术的研究进展[J]. 棉纺织技术, 2015,43(6):77-80.
ZHENG Zhanyang, HE Xinhai, YANG Chaoqun, et al. Study progress of variable cross-section three dimensional knitting technology[J]. Cotton Textile Technology, 2015,43(6):77-80.
[6] 焦亚男, 李嘉禄. 异制件用三维编织复合材料的拉伸性能[J]. 纺织学报, 2006,27(9):1-4.
JIAO Yanan, LI Jialu. Tensile properties of 3-D braided composites with profiled piece[J]. Journal of Textile Research, 2006,27(9):1-4.
[7] 田瑞娜. 变截面环形三维机织复合材料细观结构与力学性能研究[D]. 南京:南京航空航天大学, 2010: 31-46.
TIAN Ruina. Research on microstructure and mechanical properties of variable cross-section annular 3d woven composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 31-46.
[8] 刘俊岭. 减纱对2.5D织物变形性及其复合材料力学性能的影响[D]. 天津:天津工业大学, 2018: 9-15.
LIU Junling. Effect of yarn reduction on deformability of 2.5D fabric and mechanical properties of its compo-sites[D]. Tianjin: Tianjin Polytechnic University, 2018: 9-15.
[9] 刘兆麟, 俞建勇. 变截面三维编织异型件减纱工艺与力学性能的研究进展[J]. 材料导报, 2010,24(10):104-107.
LIU Zhaolin, YU Jianyong. Research progress in reducing-yarn technique and mechanical properties of 3D braided composites with tapered cross-section[J]. Materials Review, 2010,24(10):104-107.
[10] 孙颖, 刘俊岭, 郑园园, 等. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018,39(2):49-54.
SUN Ying, LIU Junling, ZHENG Yuanyuan, et al. Test on tensile properties of carbon-aramid co-braided hybrid 3D braided composites[J]. Journal of Textile Research, 2018,39(2):49-54.
[11] ZHENG Yuanyuan, SUN Ying, LI Jialu, et al. Tensile response of carbon-aramid hybrid 3D braided compo-sites[J]. Materials and Design, 2017,116:246-252.
[12] 杨彩云, 李嘉禄. 三维机织复合材料纤维体积含量计算方法[J]. 固体火箭技术, 2005,28(3):224-227.
YANG Caiyun, LI Jialu. Calculation methods of 3D woven composites fiber volume fraction[J]. Journal of Solid Rocket Technology, 2005,28(3):224-227.
[13] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015,73:242-259.
[14] CALLUS P J, MOURITZ A P, BANNISTER M K, et al. Tensile properties and failure mechanisms of 3D woven GRP composites[J]. Composites Part A: Applied Science and Manufacturing, 1999,30(11):1277-1287.
[15] IVANOV D, IVANOV S, LOMOV S, et al. Strain mapping analysis of textile composites[J]. Optics and Lasers in Engineering, 2009,47(3/4):360-370.
[16] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015,69:195-207.
[1] MA Ying, HE Tiantian, CHEN Xiang, LU Sheng, WANG Youqi. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach [J]. Journal of Textile Research, 2020, 41(07): 59-66.
[2] WANG Xinmiao, CHEN Li, ZHANG Diantang, CHEN Dong. Micro-structure and properties of multilayer multiaxial woven composites [J]. Journal of Textile Research, 2019, 40(02): 45-52.
[3] . Tesile properties of carbon-aramid hybrid 3-d braided composites [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 49-54.
[4] . Control of physical and chemical properties of oxidation degummed ramie fiber with 1, 8-dihydroxyanthraquinone [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 78-85.
[5] . Classified extraction and properties of bamboo fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 9-15.
[6] . Bending peoperties comparison of thick-section carbon fiber composites based on different three-dimensional woven structures [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 66-71.
[7] . Mechanical analysis of flame retardant three-strand yarn of polyester / aramid fiber / Poly(p-phenylene-2,6-benzo-bisoxazole) fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 28-32.
[8] . Preparation and properties of polylactic acid/polypropylene blend spunbonded fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 13-16.
[9] . Structure and property of methanol protein modified viscose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 12-15.
[10] . Mechanical properties of hemp/polylactic acid composite foamed material [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 28-34.
[11] . Influence of micro-dissolution treatment on tensile properties of hemp/cotton blended fabric [J]. Journal of Textile Research, 2015, 36(10): 97-101.
[12] . Preparation and properties of jute/soybean dregs/starch composites [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 44-0.
[13] . Impact of fabric tensile and bending properties on adhesion property under wet condition at low tension [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 27-0.
[14] . Preparation of water saving and moisture retention film for concrete curing [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 12-16.
[15] . Spinning process of cellular photocatalyst fiber/cotton blended yarns and properties thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!