Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 172-178.doi: 10.13475/j.fzxb.20190100107

• Comprehensive Review • Previous Articles     Next Articles

Research progress on theoretical models of mechanisms of fuzzing and pilling

XIAO Qi1,2,3, WANG Rui1,3(), SUN Hongyu4, FANG Shu1,3, LI Danyang1,3   

  1. 1. School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    3. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    4. Binzhou Huafang Engineering Technology Research Institute Co., Ltd., Binzhou,Shandong 256600, China
  • Received:2019-01-02 Revised:2019-11-22 Online:2020-02-15 Published:2020-02-21
  • Contact: WANG Rui E-mail:wangrui@tjpu.edu.cn

Abstract:

Aiming at the understanding of fabric pilling mechanisms, modeling conditions, theoretical principles and applied ranges of 4 types of models, based on kinetics of chemical reaction, mechanical dynamics, artificial neural network, and fiber shape scale theory model, for fabric pilling mechanisms were reviewed and discussed, with a focus on the trend on research in fabric pilling mechanisms. It is realized that some unknown parameters will have to be solved in order to use the chemical reaction kinetic model, and that the mechanical dynamics model requires complicated calculation despite high precision. A large number of training samples are required to enhance the generalization ability when using the artificial neural network model, and the mechanism of pilling cannot be quantified in the fiber scale model though the practical application is feasible. In conclusion, the review suggested that the accuracy of models and methods of solving the unknown parameters should be improved in the future. Fractal mathematics, computer simulation, finite element and other techniques should be applied to the study of geometrical nonlinear deformation of single fibers in the pilling process from the microscopic perspective to facilitate a new theoretical model. At the same time, the practical application ability of the model should be improved.

Key words: fabric, fuzzing and pilling, theoretical model, kinetics of chemical reaction, mechanical dynamics, artificial nural network

CLC Number: 

  • TS101.9

Fig.1

Chemical reaction for pilling"

Fig.2

Simplified kinetic model"

Fig.3

Extended model for pilling"

Fig.4

Pilling sequence as modeled"

[1] WAN A L, JIANG G M, YU W D, et al. Fuzzing mechanism and fibre fatigue of wool knit[J]. Indian Journal of Fibre & Textile Research, 2014,39(3):238-243.
[2] WAN A L, YU W D. Effect of fiber morphology and dimensions on fuzzing and pilling of wool knitted fa-brics[C]//Proceedings of the 12th International Wool Research Conference. Beijing:China Textile & Apparel Press, 2010: 44-47.
[3] HAJILARI M, ESFANDIARI A H, DABIRYAN H. Investigation of effect of fibers modulus on pilling of acrlic fabrics[J]. The Journal of the Textile Institute, 2009,100(2):135-140.
[4] WAN A L, YU W D. Effect of morphology and structure of fiber and yarn on fuzzing and pilling of wool knitted fabrics[C]//LUO Q, WANG Y Z. Advanced Materials Science And Technology. Switzerland: Trans Tech Publications Ltd, 2011: 474-479.
[5] KAYSERI G O, KIRTAY E. Part II. predicting the pilling tendency of the cotton interlock knitted fabrics by artificial neural network[J]. Journal of Engineered Fibers and Fabrics, 2015,10(4):62-71.
[6] REJALI M, HASANI H, AJELI S, et al. Optimization and prediction of the pilling performance of weft knitted fabrics produced from wool/acrylic blended yarns[J]. Indian Journal of Fibre & Textile Research, 2014,39(1):83-88.
[7] NAEEM F. Pilling performance improvements of fabrics made with bamboo rayon and bamboo rayon/cotton blends[J]. AATCC Journal of Research, 2018,5(6):8-16.
[8] AZEEM M, AHMAD Z, WIENER J, et al. Influence of weave design and yarn types on mechanical and surface properties of woven fabric[J]. Fibres & Textiles in Eastern Europe, 2018,26(1):42-45.
[9] LI L Y, ZHU M, WEI X. Pilling performance of cashmere knitted fabric of woollen ring yarn and mule yarn[J]. Fibres & Textiles in Eastern Europe, 2014,22(1):74-75.
[10] REN C J, ZHENG S Y, LIU H F, et al. Evaluation of fabric pilling based on hough transform and gabor filter[C]//LI J B. Proceedings First International Conference on Electronics Instrumentation & Information Systems. New York: The Institute of Electrical and Electronics Engineers, Inc, 2017, 319-322.
[11] XU B, YU W, WANG R. Stereovision for three-dimensional measurements of fabric pilling[J]. Textile Research Journal, 2011,81(20):2168-2179.
[12] YUN S Y, KIM S, PARK C K. Development of an objective fabric pilling evaluation method. II. fabric pilling grading using artificial neural network[J]. Fibers and Polymers, 2013,14(12):2157-2162.
doi: 10.1007/s12221-013-2157-1
[13] 兰红艳. 织物起毛起球的因素分析[J]. 上海毛麻科技, 2010(1):6-9.
LAN Hongyan. Analysis on the factors of the fabric pilling property[J]. Shanghai Wool & Jute Journal, 2010(1):6-9.
[14] 王科林, 孟霞, 李腊梅, 等. 精纺绒面毛织物的抗起毛起球整理[J]. 印染, 2015,41(14):35-37,41.
WANG Kelin, MENG Xia, LI Lamei, et al. Anti-pilling finish of worsted wool fabric[J]. China Dyeing & Finishing, 2015,41(14):35-37,41.
[15] 周矿. 涤棉混纺面料抗起毛起球性能改进研究[J]. 化纤与纺织技术, 2017,46(4):17-20.
ZHOU Kuang. Study on the anti-pilling improvement of cotton/polyester blended fabrics[J]. Chemical Fiber & Textile Technology, 2017,46(4):17-20.
[16] WAN A L, DAI X J J, MAGNIEZ K, et al. Reducing the pilling propensity of wool knits with a three-step plasma treatment[J]. Textile Research Journal, 2013,83(19):2051-2059.
doi: 10.1177/0040517513478459
[17] MONTAZER M, MAZAHERI F, KHOSRAVIAN S, et al. Application of resins and crosslinking agents on fiber blend fabric to reduce pilling performance, optimized by response surface methodology[J]. Journal of Vinyl & Additive Technology, 2011,17(3):213-221.
[18] HAJILARI M, TOFIGHI S, DABIRYAN H. Effect of cellusoft enzyme treatment on the pilling performance of weft-knitted fabrics using image analysis[J]. Journal of the Textile Institute, 2016,107(7):849-853.
[19] WAN A L, YU W D. Evaluation of the wool fiber surface modified by chlorine and pilling propensity of single jersey[C]//ZENG J M, LI T S, MA S J, et al. Advanced Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2011: 2380-2383.
[20] JOKISCH S, SCHEIBEL T. Spider silk foam coating of fabric[J]. Pure and Applied Chemistry, 2017,89(12):1769-1776.
[21] TUSIEF M Q, MAHMOOD N, SALEEM M. Effect of different anti pilling agents to reduce pilling on polyester/cotton fabric[J]. Journal of the Chemical Society of Pakistan, 2012,34(1):53-57.
[22] GINTIS D, MEAD E J. The mechanism of pilling[J]. Textile Research Journal, 1959,29(7):578-585.
doi: 10.1177/004051755902900709
[23] COOKE W. The influence of fiber fatigue on the pilling. part 2: fiber entanglement and pill growth[J]. Journal of the Textile Institute, 1983,74(3):101-108.
[24] COOKE W. Pilling attrition and fatigue[J]. Textile Research Journal, 1985,55(7):409-414.
[25] 于伟东. 纺织材料学[M]. 北京:中国纺织出版社, 2006: 324-326.
YU Weidong. Textile material science[M]. Beijing:China Textile & Apparel Press, 2006: 324-326.
[26] BRAND R, BOHMFALK B. A mathematical model of pilling mechanisms[J]. Textile Research Journal, 1967,37(6):467-486.
[27] CONTI W, TASSINAR. E. A simplified kinetic model for the mechanism of pilling[J]. Journal of the Textile Institute, 1974,65(3):119-125.
[28] WILLIAMS A H. A kinetic model for pilling of wool knitwear[J]. Textile Research Journal, 1985,55(5):312-320.
[29] 李茂松, 李宗富. 涤纶低弹丝织物的起毛起球机理[J]. 纺织学报, 1986(12):15-21,12.
LI Maosong, LI Zongfu. The pilling mechanism of texturized PE filament yarn fabric[J]. Journal of Textile Research, 1986(12):15-21,12.
[30] 刘蕾. 大豆蛋白纤维织物起毛起球机理分析及其改善方法研究[D]. 上海: 东华大学, 2004: 34-48.
LIU Lei. Study on fuzzing and pilling mechanism and its improving method of soybean protein fabric[D]. Shanghai: Donghua University, 204:34-48.
[31] 王碧峤. 牛奶蛋白纤维针织产品起毛起球性能研究[D]. 上海: 东华大学, 2009: 29-42.
WANG Biqiao. Study on the fuzzing and pilling performance of milk protein fiber knitted fabric[D]. Shanghai:Donghua University, 2009: 29-42.
[32] WANG B Q, ZHANG P H. Study on the fuzzing and pilling performance of milk protein knitted fabrics[C]//Proceedings of 2009 International Conference on Advanced Fibers and Polymer Materials. Beijing: Chemical Industry Press, 2009, 875-876.
[33] COOKE W. A simulation model of the pilling pro-cess[J]. Journal of the Textile Institute, 1981,72(3):111-120.
[34] COOKE W. Fiber fatigue and the pilling cycle part 3 pill wear off and fabric attrition[J]. Journal of the Textile Institute, 1984,75(3):201-211.
[35] 朱鹏. 纳米莫代尔针织物抗起球性研究[D]. 苏州: 苏州大学, 2012: 7-13.
ZHU Peng. Study on anti-pilling of nano-modal knitted fabric[D]. Suzhou: Soochow University, 2012: 7-13.
[36] NAYLOR G R S, AISSANI N, RAMSEY D J. The kinetic model of pilling revisited[J]. Textile Research Journal, 2011,81(3):247-253.
[37] HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling: part Ⅰ: detailing of mechanisms[J]. Journal of the Textile Institute, 2006,97(4):359-368.
[38] HEARLE J W S, WILKINS A H. Movement of fibers in assemblies[J]. Journal of the Textile Institute, 2006,97(1):1-9.
[39] WILKINS A H. Fibre slippage in cyclically perturbed fibrous assemblies[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006,462(2066):517-530.
[40] HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling. part II: Individual-fibre computational model[J]. Journal of the Textile Institute, 2006,97(4):369-376.
[41] 孔雪. 全毛针织物起毛与起球行为特征和数学建模[D]. 上海: 东华大学, 2015: 43-53.
KONG Xue. Behavior and mathematical model of fuzzing and pilling of wool fabrics[D]. Shanghai: Donghua University, 2015: 43-53.
[42] 孔雪, 于伟东. 羊毛针织物起球行为及平台区形态[J]. 纺织学报, 2015,36(10):38-43.
KONG Xue, YU Weidong. Behavior of pilling of wool knitted fabric and its platform region morphology[J]. Journal of Textile Research, 2015,36(10):38-43.
[43] BELTRAN R, WANG L, WANG X G. A controlled experiment on yarn hairiness and fabric pitting[J]. Textile Research Journal, 2007,77(3):179-183.
[44] BELTRAN R, WANG L, WANG X. Measuring the influence of fibre-to-fabric properties on the pilling of wool fabrics[J]. Journal of the Textile Institute, 2006,97(3):197-204.
doi: 10.1533/joti.2005.0142
[45] BELTRAN R, WANG L J, WANG X G. Predicting the pilling propensity of fabrics through artificial neural network modeling[J]. Textile Research Journal, 2005,75(7):557-561.
doi: 10.1177/0040517505056872
[46] 陈霞. 基于切面投影图像的织物起球等级的计算机视觉评定[D]. 上海:东华大学, 2004: 69-89.
CHEN Xia. The evaluation of pilling grade of fabrics using computer vision based on tangential projected images[D]. Shanghai: Donghua Uniersity, 2004: 69-89.
[47] 艾宏玲, 崔萍, 郭润兰. 神经网络技术在精纺粗花呢起毛起球等级评定中的应用[J]. 西安工程科技学院学报, 2007(2):163-167.
AI Hongling, CUI Pin, GUO Runlan. Application of the artificil neural network technology on evaluating pilling grade of worsted tweed fabric[J]. Journal of Xi'an University of Engineering Science And Technology, 2007(2):163-167.
[48] 邓文. 基于小波变换的织物起球等级的客观评定[D]. 武汉: 武汉纺织大学, 2012: 44-48.
DENG Wen. Objective assessment of fabric pilling grade based on wavelet transform[D]. Wuhan:Wuhan Textile University, 2012: 44-48.
[49] 万爱兰, 于伟东, 蒋高明. 起毛起球表征技术的研究进展与问题[J]. 纺织学报, 2014,35(5):157-164.
WAN Ailan, YU Weidong, JIANG Gaoming. Research prgress and existing problems about characterizing fuzzing and pilling[J]. Journal of Textile Research, 2014,35(5):157-164.
[50] 于伟东, 万爱兰. 羊毛的形与尺度对起毛起球的作用[J]. 纺织学报, 2012,33(1):144-150.
YU Weidong, WAN Ailan. Effects of wool morphology and diameter on fuzzing and pilling[J]. Journal of Textile Research, 2012,33(1):144-150.
[51] 万爱兰, 于伟东. 羊毛表面特征对针织物起毛起球的影响[J]. 纺织学报, 2011,32(12):28-33.
WAN Ailan, YU Weidong. Effects of wool fiber surface characteristic on fuzzing and pilling of knitted fabric[J]. Journal of Textile Research, 2011,32(12):28-33.
[52] 万爱兰. 基于形尺度的抗起毛起球机制及其评价方法[D]. 上海: 东华大学, 2013: 20-38.
WAN Ailan. Mechanism of fuzzing and pilling resistance based on morphological dimensions and method of evaluation[D]. Shanghai: Donghua University, 2013: 20-38.
[1] ZHANG Zhaohua, TANG Xiangning, LI Jun, LI Luyao. Threshold and intensity evaluation of skin wetness perception under dynamic contact with fabrics [J]. Journal of Textile Research, 2021, 42(02): 93-100.
[2] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[3] HAO Shang, XIE Yuan, WENG Jiali, ZHANG Wei, YAO Jiming. Construction of superhydrophobic surface of cotton fabrics via dissolving etching [J]. Journal of Textile Research, 2021, 42(02): 168-173.
[4] XIAO Caiqin, SUN Fengxin, GAO Weidong. Characterization of fabric smoothness appearance based on buckling-induced mechanical test with multiple deformation of fabrics [J]. Journal of Textile Research, 2021, 42(02): 80-86.
[5] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester / silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[6] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[7] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Optimization design of electrode plate based on electrostatic adsorption and transfer used for garment fabric [J]. Journal of Textile Research, 2021, 42(02): 185-192.
[8] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[9] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[10] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[11] CAI Lu, KANG Jialiang, LÜ Cun, HE Xuemei. Preparation of self-crosslinking fluorinated polyacrylate emulsion and its application properties [J]. Journal of Textile Research, 2021, 42(02): 161-167.
[12] HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124.
[13] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[14] YU Jia, XIN Binjie, ZHUO Tingting, ZHOU Xi. Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity [J]. Journal of Textile Research, 2021, 42(01): 112-117.
[15] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!