Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 90-96.doi: 10.13475/j.fzxb.20201006207

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures

ZHU Xiaowei, WEI Tianchen, XING Tieling(), CHEN Guoqiang   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2020-10-26 Revised:2021-06-04 Online:2021-09-15 Published:2021-09-27
  • Contact: XING Tieling E-mail:xingtieling@suda.edu.cn

Abstract:

In order to study the structure of amorphous photonic crystal and achieve effective control over structural color, polystyrene/polydopamine (PS/PDA) microspheres with shell-core structure prepared by rapid oxidation were used to construct 3-D structure on cotton fabrics, and Rsoft software was used to establish a numerical model to calculate its optical properties. The influence of particle size and incident angle of crystal microsphere on the reflectivity of photonic crystal was investigated, and the chromaticity coordinate was obtained by CIE standard chromaticity system. The results show that the calculated results are in good agreement with the experimental results. The structures of PS/PDA nanospheres with particle sizes of 195, 222, 267 and 287 nm correspond to blue, green, yellow-green and red colors respectively, and the structural color will not change with the different incident angle. By numerical simulation, the size of the nanoparticles can be controlled and the photonic pseudo band gap of the amorphous photonic crystal can be adjusted effectively.

Key words: structural color, structural colored fabric, polystyrene/polydopamine microspheres, amorphous photonic crystal, random close-packed structure, total reflection spectrum

CLC Number: 

  • TS193

Fig.1

Microscope images of amorphous photonic crystal fabricated by PS/PDA with different diameters on cotton fabrics"

Fig.2

TEM image of PS NPs(a) and PS/PDA NPs(b)"

Fig.3

SEM image of PS/PDA amorphous photonic crystal with a diameter of 195 nm"

Fig.4

PS/PDA amorphous photonic crystal model with a diameter of 195 nm"

Fig.5

Results of reflectance spectra of amorphous photonic crystals with different diameters"

Fig.6

Simulation (a) and measurement (b) results of reflection spectra of PS/PDA amorphous photonic crystalsat(particles size is 195 nm) different incident angles"

Fig.7

Simulation(a) and measurement (b) results of reflection spectra of PS/PDA amorphous photonic crystals(particles size is 222 nm) at different incident angles"

Fig.8

Simulation (a) and measurement (b) results of reflection spectra of PS/PDA amorphous photonic crystals (particles size is 267 nm) at different incident angles"

Fig.9

Simulation and measurement results of reflection spectra of PS/PDA amorphous photonic crystals(particles size is 287 nm) at different incident angles"

Tab.1

Tristimulus values and chromaticity coordinates of PS/PDA amorphous photonic crystals with different particle sizes at different viewing angles"

样品编号 粒径/nm 入射角度/(°) X Y Z x y
1 195 5 5.656 5.425 26.202 0.152 0.146
2 10 5.677 5.091 26.377 0.153 0.137
3 15 5.680 4.569 26.551 0.154 0.124
4 20 5.659 3.914 26.623 0.156 0.108
5 25 5.577 3.223 26.296 0.159 0.092
6 30 5.319 2.551 25.114 0.161 0.077
7 222 5 3.840 6.367 6.984 0.223 0.370
8 10 3.707 6.031 6.932 0.222 0.362
9 15 3.489 5.510 6.874 0.220 0.347
10 20 3.235 4.854 6.798 0.217 0.326
11 25 2.952 4.131 6.659 0.215 0.301
12 30 2.632 3.389 6.477 0.211 0.271
13 267 5 7.025 7.294 4.944 0.365 0.379
14 10 6.761 7.131 4.811 0.361 0.381
15 15 6.338 6.867 4.592 0.356 0.386
16 20 5.742 6.472 4.290 0.348 0.392
17 25 5.027 5.924 3.913 0.338 0.399
18 30 4.225 5.267 3.349 0.329 0.410
19 287 5 6.601 5.740 5.562 0.369 0.321
20 10 6.460 5.634 5.376 0.370 0.323
21 15 6.237 5.466 5.062 0.372 0.326
22 20 5.898 5.212 4.616 0.375 0.331
23 25 5.398 4.821 4.050 0.378 0.338
24 30 4.799 4.311 3.391 0.384 0.345

Fig.10

CIE chromaticity diagram of different coloramorphous photonic crystals"

[1] 张骜, 袁伟, 周宁, 等. 结构生色及其染整应用前景:一[J]. 印染, 2012, 13:44-47.
ZHANG Ao, YUAN Wei, ZHOU Ning, et al. Structural color and its application prospect in dyeing and finishing industry:I[J]. China Dyeing & Finishing, 2012, 13:44-47.
[2] ZHANG Y F, DONG B Q, CHEN A, et al. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility[J]. Advanced Materials, 2015, 27:4719-4724.
doi: 10.1002/adma.v27.32
[3] 吴玉江, 刘国金, 李义臣, 等. 二氧化硅光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2015, 36(10):62-66.
WU Yujiang, LIU Guojin, LI Yichen, et al. Structural colors of SiO2 photonic crystals on polyester fabrics[J]. Journa1 of Textile Research, 2015, 36(10):62-66.
[4] 陈佳颖, 辛斌杰, 辛三法, 等. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(4):181-187.
CHEN Jiaying, XIN Binjie, XIN Sanfa, et al. Research progress in structurally colored fabrics using photonic crystals[J]. Journa1 of Textile Research, 2020, 41(4):181-187.
[5] 杜宏艳, 戚宇帆, 吴晨雪, 等. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12):111-117.
DU Hongyan, QI Yufan, WU Chenxue, et al. Prepartion and optical properties of SiO2 photonic crystal structure color film[J]. Journal of Materials Engineering, 2019, 47(12):111-117.
[6] WANG F, ZHANG X, ZHANG L, et al. Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property[J]. Dyes & Pigments, 2016, 130:202-208.
[7] 王淑珍, 徐薇涵, 陈光霞, 等. 非晶光子晶体结构显色的研究进展[J]. 包装工程, 2019, 40(5):89-93.
WANG Shuzhen, XU Weihan, CHEN Guangxia, et al. Progress of structural color of amorphous photonic crystals[J]. Packaging Engineering, 2019, 40(5):89-93.
[8] 曾琦, 李青松, 袁伟, 等. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1):43-55.
ZENG Qi, LI Qingsong, YUAN Wei, et al. The mechanism and its application of amorphous photonic crystals with structural color[J]. Materials Reports, 2017, 31(1):43-55.
[9] FORSTER J D, NOH H, LIEW S F, et al. Biomimetic isotropic nanostructures for structural coloration[J]. Advanced Materials, 2010, 22:2939-2944.
doi: 10.1002/adma.200903693
[10] WANG X H, LI Y C, ZHOU L, et al. Structural colouration of textiles with high colour contrast based onmelanin-like nanospheres[J]. Dyes & Pigments, 2019, 169:36-44.
[11] 赵强. 光子晶体光纤基本特性的有限元法研究[D]. 郑州:郑州大学, 2011:8-9.
ZHAO Qiang. Study on the basic characteristics of photonic crystal fiber by finite element method[D]. Zhengzhou: Zhengzhou University, 2011:8-9.
[12] 周宁. 基于胶体微球光子晶体结构色纤维的光学性质研究[D]. 苏州:苏州大学, 2013:33-34.
ZHOU Ning. Study on the optical properties of colored fibers based on colloidal microsphere photonic crystal structure[D]. Suzhou: Soochow University, 2013:33-34.
[13] JODREY W S, TORY E M. Computer simulation of close random packing of equal spheres[J]. Physical Review A, 1985, 32(4):2347-2351.
doi: 10.1103/PhysRevA.32.2347
[14] CHAN C T, YU Q L, HO K M. Order-N spectral method for electromagnetic waves[J]. Physical Review B, 1995, 51(23):16635-16642.
doi: 10.1103/PhysRevB.51.16635
[15] NOH H, LIEW S F, SARANATHAN V, et al. How noniridescent colors are generated by quasi-ordered structures of bird feathers[J]. Advanced Materials, 2010, 22:2871-2880.
doi: 10.1002/adma.200903699
[16] ZHANG C, WU B H, DU Y, et al. Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors[J]. Journal of Materials Chemistry C, 2017, 5(16):3898-3902.
doi: 10.1039/C7TC00530J
[17] 保秀娟. 团聚形核壳结构冰晶粒子的光散射特性研究[D]. 西安:西安理工大学, 2019:19-20.
BAO Xiujuan. Light scattering of agglomerated nucleated shell-structured ice crystal particles[D]. Xi'an:Xi'an University of Technology, 2019: 19-20.
[18] LOURTIOZ J M, BENISTY H, BERGER V. Photonic crystals, towards nanoscale photonic devices (second edition)[J]. Physics Today, 2006, 59(8):54-55.
[19] 张洪波. 静电自组装技术实现结构色的应用与研究[D]. 上海:东华大学, 2014:13-19.
ZHANG Hongbo. Application and research of structural color fabricated by electrostatic self-assembly[D]. Shanghai: Donghua University, 2014:13-19.
[1] LIU Mingxue, ZHAO Qian, WANG Xiaohui, LIU Qiongxi, SHAO Jianzhong. Bonding fastness of magnetron sputtering nano-films with various textile substrates [J]. Journal of Textile Research, 2021, 42(02): 135-141.
[2] WANG Xiaohui, LI Yichen, LIU Guojin, TANG Zuping, ZHOU Lan, SHAO Jianzhong. Preparation and optical properties of flexible photonic crystal film for structural colors [J]. Journal of Textile Research, 2021, 42(02): 12-20.
[3] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[4] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[5] CHEN Jiaying, XIN Binjie, XIN Sanfa, DU Weiping, XU Yingqi, GAO Weihong. Research progress in structurally colored fabrics using photonic crystals [J]. Journal of Textile Research, 2020, 41(04): 181-187.
[6] . Structure analysis and color formation of Liang cloth [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 85-89.
[7] . Structural colors of SiO2/polymethyllmethacrylate photonic crystal on polyester fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 62-67.
[8] . Optics Properties of fabric with multiple structural colors [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!