Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 46-50.doi: 10.13475/j.fzxb.20201203105

• Textile Engineering • Previous Articles     Next Articles

Test method for abrasion resistance of sized yarn under simulated weaving conditions

GUO Min, GAO Weidong(), ZHU Bo, LIU Jianli, GUO Mingrui   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-12-11 Revised:2021-03-01 Online:2021-11-15 Published:2021-11-29
  • Contact: GAO Weidong E-mail:gaowd3@163.com

Abstract:

The existing yarn abrasion resistance tester is unable to obtain accurate results due to the great difference between the testing condition and the weaving state. To improve the abrasion resistance test accuracy of the sized yarn, an new abrasion resistance tester(JN-01 Sizing Abrasion Tester) was designed and constructed, which closely simulate the weaving conditions.The tester involves the let-off mechanism, take-up mechanism, shedding mechanism, beating-up mechanism, and a yarn tension adaptive adjustment mechanism. It is able to maintain a constant yarn tension and load stability during the test. Based on the actual test of the yarn abrasion resistance, the influence of the number of samples on test results was discussed, and a total of 50 sized yarns in 5 groups were determined as test samples. Through testing the abrasion resistance of raw and sized yarns on JN-01 and LFY-109A Yarn Abrasion Tester for three levels of fineness, the stability of JN-01 Sizing Abrasion Tester was verified, which could meet the test requirements.

Key words: weaving, sized yarn, abrasion resistance, yarn tension, opening stroke, swinging angle of reed-base

CLC Number: 

  • TS103.12

Fig.1

JN-01 Sizing Abrasion Tester"

Fig.2

Abrasive reed rod and its sley seat applied to yarn"

Fig.3

Tension induction and testing device"

Fig.4

Human-computer interaction interface"

Tab.1

Test results of abrasion resistance of sizing yarn with different sample sizes"

测试浆纱根数 耐磨寿命均值/次 耐磨寿命CV值/%
30 210.67 20.94
40 205.95 25.62
50 206.56 24.56
60 203.40 26.37
70 207.29 27.43
80 205.38 28.25
90 204.73 27.29
100 206.26 26.67

Tab.2

Results of abrasion resistance life of yarn"

仪器
型号
线密
度/tex
原纱 浆纱 耐磨提
高率/%
耐磨寿
命/次
CV值/
%
耐磨寿
命/次
CV值/
%
JN-01 14.5 163.8 28.92 199.6 25.31 21.86
9.7 193.7 31.52 352.4 29.60 81.93
5.8 199.6 30.58 301.4 31.33 51.00
LFY-109A 14.5 49.2 29.02 115.5 34.74 134.76
9.7 64.2 34.34 212.3 45.72 230.69
5.8 72.6 32.61 199.4 47.18 174.66
[1] SOLTANI P, JOHARI M S. A study on siro-, solo-, compact-, and conventional ring-spun yarns: part I: structural and migratory properties of the yarns[J]. Journal of The Textile Institute, 2012, 103(6):622-628.
doi: 10.1080/00405000.2011.595567
[2] 李沛赢, 郭明瑞, 高卫东. 应用给湿装置改善环锭纺成纱毛羽[J]. 纺织学报, 2018, 39(5):108-112.
LI Peiying, GUO Mingrui, GAO Weidong. Reducing yarn hairiness by wetting in ring spinning[J]. Journal of Textile Research, 2018, 39(5):108-112.
[3] GÖKTEPEF, YILMAZ D, GÖKTEPEÖ. A comparison of compact yarn properties produced on different systems[J]. Textile Research Journal, 2006, 76(3):226-234.
doi: 10.1177/0040517506061241
[4] ISHTIAQUE S M, RENGASAMY R S, DAS B R. Prediction of strength and weavability of blended spun yarns[J]. Fibers and Polymers, 2014, 15(8):1752-1757.
doi: 10.1007/s12221-014-1752-0
[5] 卢雨正, 张建祥, 刘建立, 等. 泡沫上浆与经纱预湿协同工艺的浆纱效果[J]. 纺织学报, 2014, 35(12):47-51.
LU Yuzheng, ZHANG Jianxiang, LIU Jianli, et al. Sizing effects of foam-sizing and warp pre-wetting combined process[J]. Journal of Textile Research, 2014, 35(12):47-51.
[6] 向忠, 刘杨, 钱淼, 等. 纤维及其制品摩擦性能测试方法的研究进展[J]. 纺织学报, 2018, 39(11):173-180.
XIANG Zhong, LIU Yang, QIAN Miao, et al. Research progress in test methods of friction properties of fiber and its products[J]. Journal of Textile Research, 2018, 39(11):173-180.
doi: 10.1177/004051756903900207
[7] OBAID A A, GILLESPIE J W J. Effects of abrasion on mechanical properties of Kevlar KM2-600 and S glass tows[J]. Textile Research Journal, 2018, 89(6):989-1002.
doi: 10.1177/0040517518760753
[8] GUDLIN S I, KOVACEVIC S, DIMITROVSKI K. Analysis of changes in mechanical and deformation properties of yarn by sizing[J]. Textile Research Journal, 2011, 81(5):545-555.
doi: 10.1177/0040517510383612
[9] XIE K F, XU Y F, SHEN H, et al. Study on the wearability and abrasion mechanism of braided harness cord[J]. Textile Research Journal, 2019, 89(14):2961-2969.
doi: 10.1177/0040517518805377
[10] 张召阳, 杨红英, 刘让同, 等. 不同纱线耐磨仪的实验对比分析[J]. 中原工学院学报, 2007, 18(3):5-8.
ZHANG Zhaoyang, YANG Hongying, LIU Rangtong, et al. Experimental comparative analysis of different yarn abraders[J]. Journal of Zhongyuan University of Technology, 2007, 18(3):5-8.
[11] 周香琴, 刘宜胜. 织机开口引起的经纱张力变化规律[J]. 纺织学报, 2014, 35(5):132-136.
ZHOU Xiangqin, LIU Yisheng. Warp tension change caused by shedding on loom[J]. Journal of Textile Research, 2014, 35(5):132-136.
[12] 朱苏康, 高卫东. 机织学[M].2版. 北京: 中国纺织出版社, 2015:184-189.
ZHU Sukang, GAO Weidong. Weaving [M]. 2nd ed. Beijing: China Textile & Apparel Press, 2015:184-189.
[1] HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, HONG Xinghua, ZHOU Zhifang. Design of three-dimensional spacer fabrics based on rapier looms [J]. Journal of Textile Research, 2021, 42(06): 166-170.
[2] MA Shasha, WANG Junbo, LUO Qian, SI Fang, YANG Min'ge, CHEN Ningbo, ZHANG Xiaofeng, LI Bo. Effect of nickel-phosphorus-nano-SiC-polytetrafluoroethylene electroless composite plating on lifetime of traveller for yarn spinning [J]. Journal of Textile Research, 2020, 41(12): 151-156.
[3] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[4] PENG Xi, ZHOU Jiu. Characteristics and evolution of backed weave structure of brocade in ancient China [J]. Journal of Textile Research, 2020, 41(09): 67-75.
[5] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[6] LIU Yisheng, XU Guangyi. Effect of incident angle of oblique airflow on weft yarn tucking [J]. Journal of Textile Research, 2020, 41(07): 72-77.
[7] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[8] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[9] YU Xiaohong, LIU Yangfei, ZHENG Xiaofei. Implementation and application of jacquard weaving CAD software concise design pattern for multi-warp multi-weft fabrics [J]. Journal of Textile Research, 2020, 41(01): 63-68.
[10] GAO Zhigang, LIU Leilei, WANG Yong, XU Yang. Automation improvement design of weaving curtain loom [J]. Journal of Textile Research, 2019, 40(12): 119-126.
[11] WANG Xu, DU Zengfeng, WANG Cuie, NI Qingqing, LIU Xinhua. Parametric three-dimensional modeling on through-thickness orthogonal woven fabric structure [J]. Journal of Textile Research, 2019, 40(11): 57-63.
[12] ZHANG Qi, LUO Cheng, QU Chaoqun, WEI Li, CHENG Qian, XIA Fenglin. Key control technology of breakpoint continuous weaving applied in modern warp knitting electronic jacquard control system [J]. Journal of Textile Research, 2019, 40(10): 164-170.
[13] WU Shufang, ZHANG Tingting, HASAN Md Rokibul, CHEN Yiren. Improvement of friction performance of polyester interlacement yarn linen-like fabric [J]. Journal of Textile Research, 2019, 40(10): 134-140.
[14] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[15] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 119 -120 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 9 -10 .