Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 81-89.doi: 10.13475/j.fzxb.20210300309

• Textile Engineering • Previous Articles     Next Articles

Mechanical properties and damage mechanism of three-dimensional six-directional braided SiCf/SiC composites

YUAN Qiong1, QIU Haipeng2, XIE Weijie2, WANG Ling2, WANG Xiaomeng2, ZHANG Diantang1(), QIAN Kun1   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Aerospace Composites Technology Center, Beijing 101300, China
  • Received:2021-03-01 Revised:2021-08-09 Online:2021-12-15 Published:2021-12-29
  • Contact: ZHANG Diantang E-mail:zhangdiantang@jiangnan.edu.cn

Abstract:

Aiming at the failure of ceramic matrix composites upon tensile and bending loading during service, the three-dimensional six-directional braided SiCf/SiC composites were investigated, and the mechanism of the mechanical properties of the composites and the relationship between the fiber and structure during the stress process was analyzed. Microcomputer tomography technology was used to obtain three-dimensional images of the material structure and pores, and the longitudinal and transverse tensile/bending properties of the composite material were tested, and the damage mechanism was discussed. The results show that the three-dimensional six-directional braided SiCf/SiC composites exhibit obvious anisotropic characteristics, and the longitudinal tensile and bending strength is 10.37 and 5.06 times that in the transverse direction, respectively. The damage modes of the composites under different forces were found to be different. Under tensile loading, the longitudinal cracks expand along a zigzag route formed by the six-direction yarns, while the transverse cracks expand along the braid axis, resulting in tensile failure. Under bending loading, the cracks expand along the thickness direction and finally cause the ductile fracture in the longitudinal and transverse directions, and the longitudinal toughness was found better than the transverse toughness.

Key words: three-dimensional six-directional braided fabric, SiCf/SiC composite, composite failure, uniaxial tensile, three-point bending test, damage mechanism

CLC Number: 

  • TB332

Fig.1

Three-dimensional six-directional braided preform shape"

Fig.2

Three-dimensional six-directional braided preform shape. (a)SiCf/SiC composite;(b)Internal pores of SiCf/SiC composite"

Fig.3

Three-dimensional six-directional braided SiCf/SiC composite longitudinal and transverse tensile stress-strain curves"

Tab.1

Tensile mechanical properties of SiCf/SiC three-dimensional six-directional braided composites"

试样方向 拉伸强度/MPa 拉伸模量/GPa 断裂应变/%
纵向 243.29±44.71 265.87±10.08 0.30±0.17
横向 23.45±3.22 28.39±9.61 0.26±0.07

Fig.4

Longitudinal SiCf/SiC composite tensile damage morphology. (a) Ultra-depth of field images of front and side(×100); (b)Transverse matrix crack (×400); (c)Fiber extraction (×500); (d)Interface layer no debonding(×2 000); (e)Matrix debris (×2 500)"

Fig.5

Transverse SiCf/SiC composite tensile damage morphology. (a) Ultra-depth of field images of front and back(×100); (b)Axial matrix crack (×400); (c)Interfacial layer debonding and fiber debonding (×1 000); (d)Matrix fracture (×400); (e)Matrix debris (×2 500)"

Fig.6

Tensile force diagram of longitudinal (a) and transverse (b) direction of SiCf/SiC composite"

Fig.7

Three-dimensional six-directional braided SiCf/SiC composite longitudinal and transverse bending stress-deflection curves"

Tab.2

Bending mechanical properties of three-dimensional six-directional braided SiCf/SiC composites"

试样方向 弯曲强度/MPa 弯曲模量/GPa 断裂挠度/mm
纵向 469.76±37.22 117.31±38.44 0.49±0.01
横向 92.90±13.51 80.81±12.52 0.30±0.03

Fig.8

Longitudinal SiCf/SiC composite bending damage morphology. (a)Ultra-depth of field image on stretched side and compressed side (×100); (b)Step fracture (×300); (c)Fiber extraction (×150); (d)Fiber debonding (×2 500); (e)Fiber fragmentation (×400)"

Fig.9

Transverse SiCf/SiC composite bending damage morphology. (a)Ultra-depth of field image on stretched side and compressed side (×100); (b)Crack growth (×2 000); (c)Broken base block (×600); (d)Debonding of interface layer (×2 000); (e)Fiber bundle pull out (×300)"

Fig.10

Three-point bending loading diagram (a) and bending force diagram of longitudinal (b) and transverse (c) direction of SiCf/SiC composite"

Tab.3

Tension/bending relationship of SiCf/SiC three-dimensional six-directional braided composite"

试样方向 拉伸强度/
MPa
弯曲强度/
MPa
拉伸/弯曲
强度比
弯曲试样
体积/cm3
拉伸试样标距
段体积/cm3
m
纵向 243.29±44.71 469.76±37.22 0.52 3 000 1 250 5.3
横向 23.45±3.22 92.90±13.51 0.25 3 000 1 250 0.6
[1] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1):24-32.
ZHANG Litong, CHENG Laifei, XU Yongdong. Res-earch progress of new silicon carbide ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2003(1):24-32.
[2] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiC/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750.
[3] 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12):73-80.
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Three-dimensional woven corner interlocking SiCf/SiC composite material bending performance and damage mechanism[J]. Journal of Textile Research, 2020, 41(12):73-80.
[4] 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6):136-161.
ZHAO Chenwei, MAO Junkui, TU Zecan, et al. Current status and prospects of thermal analysis methods for fiber-toughened ceramic matrix composite hot-end parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):136-161.
[5] LIU X D, ZHANG D T, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures, 2020, 245:112347.
doi: 10.1016/j.compstruct.2020.112347
[6] 郭颖, 吴林志, 杨银环, 等. 三维六向编织复合材料拉伸性能的实验研究[J]. 宇航学报, 2012, 33(5):669-674.
GUO Ying, WU Linzhi, YANG Yinhuan, et al. Experimental study on the tensile properties of three-dimensional six-directional braided composites[J]. Journal of Astronautics, 2012, 33(5):669-674.
[7] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(4):58-63.
LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on torsion energy of carbon nanotube yarns[J]. Journal of Textile Research, 2020, 41(4):58-63.
[8] XU K, QIAN X M, XU L M, et al. Microstructure analysis and solid unit cell modeling of three dimensionally six-directional braided composites[J]. Journal of Industrial Textiles, 2017, 46(5):1257-1280.
doi: 10.1177/1528083715619956
[9] GAO Y T, ZHOU H J, LIU M, et al. Mechanical and thermal properties of chemical vapor infiltration engineered 2D-woven and 3D-braided carbon silicate composites[J]. Ceramics International, 2015, 41(9):10949-10956.
doi: 10.1016/j.ceramint.2015.05.038
[10] ZHAO S, ZHOU X G, YU J, et al. Fabrication and characterization of 2.5D and 3D SiCf/SiC compo-sites[J]. Fusion Engineering and Design, 2013, 88(9/10):2453-2456.
doi: 10.1016/j.fusengdes.2013.04.002
[11] ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiC/SiC composites at 1 350 ℃ in air[J]. Ceramics International, 2020, 46(6):7982-7990.
doi: 10.1016/j.ceramint.2019.12.020
[12] JING X, YANG X G, SHI D Q, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9):6721-6729.
doi: 10.1016/j.ceramint.2017.02.076
[13] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885.
HU Xiaoan, ZHANG Yu, YANG Haitang, et al. Tension and bending damage mechanism of three-dimensional braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1879-1885.
[14] 蒋丽娟, 侯振华, 周寅智. 预制体结构及界面对三维SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3):642-649.
JIANG Lijuan, HOU Zhenhua, ZHOU Yinzhi. Influence of preform structure and interface on tensile properties of three-dimensional SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3):642-649.
[15] HOU Z H, LUO R Y, YANG W, et al. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites[J]. Materials Science and Engineering: A, 2016, 658:263-271.
doi: 10.1016/j.msea.2016.02.006
[16] 葛斌. PIP工艺制备KD-S SiCf/SiC复合材料结构及性能研究[D]. 长沙:国防科技大学, 2018:7-8.
GE Bin. Research on the structure and properties of KD-S SiCf/SiC composite prepared by PIP process[D]. Changsha:National University of Defense Technology, 2018:7-8.
[17] LIAO J H, CHEN Z F, LI B B, et al. Microstructure and mechanical properties of C/SiC-Al composites fabricated by PIP and vacuum pressure infiltration processes[J]. Journal of Alloys and Compounds, 2019, 803:934-941.
doi: 10.1016/j.jallcom.2019.06.364
[18] NANNETTI C A, RICCARDI B, ORTONA A, et al. Development of 2D and 3D Hi-nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route[J]. Journal of Nuclear Materials, 2002, 307:1196-1199.
[19] GYANENDER S, STEVE G, CHRISTIAN D, et al. Interlaboratory round robin study on axial tensile properties of SiC/SiC CMC tubular test specimens[J]. International Journal of Applied Ceramic Technology, 2018, 15(6):1334-1349.
doi: 10.1111/ijac.2018.15.issue-6
[20] 庞宝琳, 焦健, 王宇, 等. 不同界面层体系对SiC/SiC复合材料性能的影响[J]. 航空制造技术, 2014, 57(6):79-82,85.
PANG Baolin, JIAO Jian, WANG Yu, et al. The influence of different interface layer systems on the properties of SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014, 57(6):79-82,85.
[21] 张冰玉, 王岭, 焦健, 等. 界面层对SiCf/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017, 60(12):78-83.
ZHANG Bingyu, WANG Ling, JIAO Jian, et al. The effect of interface layer on the mechanical properties and oxidation behavior of SiCf/SiC composites[J]. Aeronautical Manufacturing Technology, 2017, 60(12):78-83.
[22] 谢巍杰, 陈明伟. SiC/SiC复合材料高温力学性能研究[J]. 人工晶体学报, 2016, 45(6):1534-1538.
XIE Weijie, CHEN Mingwei. Study on high temperature mechanical properties of SiC/SiC composites[J]. Journal of Synthetic Crystals, 2016, 45(6):1534-1538.
[23] 包亦望, 金宗哲. 脆性材料弯曲强度与抗拉强度的关系研究[J]. 中国建筑材料科学研究院学报, 1991(3):1-5.
BAO Yiwang, JIN Zongzhe. Study on the relationship between flexural strength and tensile strength of brittle materials[J]. Journal of China Building Materials Academy, 1991(3):1-5.
[24] SIEMERS P A, MEHAN R L, MORAN H. A comparison of the uniaxial tensile and pure bending strength of SiC filaments[J]. Journal of Materials Science, 1988, 23(4):1329-1333.
doi: 10.1007/BF01154597
[25] PARAMONOV Y, ANDERSONS J. A family of weakest link models for fiber strength distribution[J]. Composites Part A: Applied Science and Manufacturing, 2006, 38(4):1227-1233.
doi: 10.1016/j.compositesa.2006.06.004
[26] 吴守军, 成来飞, 董宁, 等. 3D Hi-nicalon/SiC复合材料室温三点弯曲强度分布[J]. 复合材料学报, 2005, 22(5):130-133.
WU Shoujun, CHENG Laifei, DONG Ning, et al. Three-point bending strength distribution of 3D Hi-nicalon/SiC composites at room temperature[J]. Acta Materiae Compositae Sinica, 2005, 22(5):130-133.
[1] YANG Tiantian, WANG Ling, QIU Haipeng, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites [J]. Journal of Textile Research, 2020, 41(12): 73-80.
[2] WANG Xu;YAN Xiong. Acoustic emission features on damage behaviors of PE self-reinforced composites [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 27-31.
[3] RONG Qi;QIU Yiping. Bending fatigue behavior of 3-D woven composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 42-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 116 -118 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[4] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[5] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .
[6] LUO Jun;FEI Wan-chun. Distribution of the filament number of each cocoon layer in raw silk threads[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 1 -4 .
[7] MA Xiao-guang;CUI Gui-xin;DONG Shao-wei . Study of gel form intelligent cotton knitgoods with polymer grafting initiated by microwave plasma[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 13 -16 .
[8] WAN Zhen-kai;LI Jing-dong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 20 -24 .
[9] BAO Xiao-min;WANG Ya-ming. Image segmentation based on the minimum risk Bayes decision[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 33 -36 .
[10] JIANG Ying;LIU Guo-lian. Study on consumer′s perceptual demand for the image of T-shirt[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 98 -100 .