Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 36-40.doi: 10.13475/j.fzxb.20210600705

• Fiber Materials • Previous Articles     Next Articles

Determination of molecular weight and Mark-Houwink parameters of bio-based polyamide 56

WANG Lijuan1, GONG Yumei1(), LI Xiaoyan1, WANG Ying1, HAO Xinmin2, FAN Lijun3   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Institute of Quartermaster Engineering & Technology, Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
    3. Eco-Nylon (Dandong) Co., Ltd., Dandong, Liaoning 118303, China
  • Received:2021-06-01 Revised:2022-01-16 Online:2022-07-15 Published:2022-07-29
  • Contact: GONG Yumei E-mail:ymgong@dlpu.edu.cn

Abstract:

In order to quickly evaluate the molecular weight of the bio-based polyamide 56 (PA56), the molecular weight parameters K and α of Mark-Houwink equation for bio-based PA56 were calculated by measuring the molecular weight and fluidity of the solution. Bio-based PA56 was dissolved in 90% formic acid (FA) and hexafluoroisopropanol (HFIP) respectively, and the intrinsic viscosity of the dilute solution was determined at 25 ℃. It was found reasonable to use the limit of specific concentration viscosity as intrinsic viscosity value in solvent FA which formed strong hydrogen bond with PA56, but in solvent HFIP that was unable to form strong hydrogen bond with bio-based PA56, the specific concentration and logarithmic viscosity limits intersect at a point where intrinsic viscosity was determined. The molecular weight parameters of bio-based PA56 in FA were found to be α=0.77 and K=7.088×10-3 cm3/g, and the molecular weight parameters in HFIP were α=0.90 and K=2.140×10-3 cm3/g.

Key words: bio-based polyamide 56, Mark-Houwink parameters, hexafluoroisopropanol, formic acid, intrinsic viscosity

CLC Number: 

  • O645

Tab.1

Flowing time of solution with different concentrations in Ubbelohde viscometer."

溶液质量浓度 FA(HFIP) c0/4 c0/3 c0/2 2c0/3 c0
流出时间 t0 t1 t2 t3 t4 t5

Tab.2

End-group titration of bio-based PA56 samples"

样品 端氨基的量/(mmol·kg-1) 端羧基的量/(mmol·kg-1)
S1 40.2 113.2
S2 21.2 112.5
S3 48.9 68.1
S4 44.3 97.2

Tab.3

Flowing time of S1, S2 and S3 solutions in FA with different concentrations in Ubbelohde viscometerss"

样品编号 FA c0/4 c0/3 c0/2 2c0/3 c0
S1 45.16 57.07 61.62 70.41 79.34 97.27
S2 45.16 58.45 63.57 73.12 82.92 103.21
S3 45.16 60.06 65.30 76.45 87.63 110.45

Fig.1

Flowing curves of S1, S2 and S3 solutions in FA"

Tab.4

Intrinsic viscosity values of S1, S2 and S3 solutions in FAdL/g"

样品编号 [ηsp] [ηr] [η]
S1 1.046 1.003 1.024
S2 1.162 1.105 1.133
S3 1.288 1.218 1.253

Tab.5

Flowing time of S3 and S4 solutions in HFIP with different concentrations in Ubbelohde viscometerss"

样品编号 HFIP c0/4 c0/3 c0/2 2c0/3 c0
S3 121.76 170.38 185.55 222.92 264.18 366.39
S4 121.76 161.50 173.68 207.61 240.81 315.98

Fig.2

Flowing curves of S3 and S4 solutions in HFIP"

Tab.6

Mark-Houwink parameters of bio-based PA56 in FA and HFIP dilute solution"

样品编号 FA稀溶液 HFIP稀溶液
[ηsp] [ηr] [η] [η]
α K×103/(cm3·g-1) α K×103/(cm3·g-1) α K×103/(cm3·g-1) α K×103/(cm3·g-1)
S1-S2 0.77 7.087 0.71 12.000 0.74 9.225
S1-S3 0.77 7.091 0.72 9.901 0.74 8.899
S2-S3 0.77 7.087 0.73 10.920 0.75 8.379
S3-S4 0.90 2.140
平均值 0.77 7.088 0.72 10.940 0.74 8.834 0.90 2.140
[1] 郭亚飞, 郝新敏, 李岳玲, 等.生物基尼龙56与尼龙6、尼龙66纤维结构和性能对比研究[C]// 2014年“中国化学纤维工业协会·恒逸基金”优秀学术论文研讨会. 北京: 中国化学纤维工业协会, 2014: 169-174.
GUO Yafei, HAO Xinmin, LI Yueling, et al. Comparative study on the structure and properties of bio-based nylon 56, nylon 6, and nylon 66 fibers[C]// 2014 “China Chemical Fiber Association·Hengyi Fund” Excellent Academic Papers. Beijing: China Chemical Fiber Industry Association, 2014: 169-174.
[2] GUO Yafei, HAO Xinmin, LI Yueling, et al. Evaluate on the alkaline resistance properties of bio-based nylon 56 fiber compared with the normal nylon fiber[J]. Advanced Materials Research, 2014, 1048: 31-35.
doi: 10.4028/www.scientific.net/AMR.1048.31
[3] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(4): 26-32.
SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields[J]. Journal of Textile Research, 2021, 42(4): 26-32.
[4] 杨婷婷, 高远博, 郑毅, 等. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(4): 1-7.
YANG Tingting, GAO Yuanbo, ZHENG Yi, et al. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber[J]. Journal of Textile Research, 2021, 42(4): 1-7.
doi: 10.1177/004051757204200101
[5] 彭治汉, 施祖培. 塑料工业手册聚酰胺[M]. 北京: 化学工业出版社, 2001: 92-93.
PENG Zhihan, SHI Zupei. Handbook of the plastics industry polyamides[M]. Beijing: Chemical Industrial Press, 2001: 92-93.
[6] ELTAHIR Yassir A, SAEED Haroon A M, XIA Yumin, et al. Preparation of polyamide 56 (PA56) fibers and its mechanical properties[J]. Advanced Materials Research, 2014, 937: 86-91.
doi: 10.4028/www.scientific.net/AMR.937.86
[7] WANG Yu, KANG Hongliang, GUO Yafei, et al. The structures and properties of bio-based polyamide 56 fibers prepared by high-speed spinning[J]. Journal of Applied Polymer Science, 2020, 49344: 1-13.
[8] 张晨, 王学利, 黄莉茜, 等. 低速纺生物基聚己二酸戊二胺长丝的性能[J]. 东华大学学报(自然科学版), 2016, 42(2): 198-203.
ZHANG Chen, WANG Xueli, HUANG Liqian, et al. Properties of biological based poly(adipic acid-1,5-diaminopentane) fibers with low speed spinning[J]. Journal of Donghua University(Natural Science), 2016, 42(2): 198-203.
[9] WANG Yu, KANG Hongliang, WANG Rui, et al. Crystallization of polyamide 56/polyamide 66 blends: non-isothermal crystallization kinetics[J]. Journal of Applied Polymer Science, 2018, 46409: 1-10.
[10] 吴田田, 王学利, 俞建勇, 等. 生物基尼龙56的非等温结晶性能研究[J]. 纺织导报, 2017 (5): 98-100.
WU Tiantian, WANG Xueli, YU Jianyong, et al. Study on non-isothermal crystallization kinetics of bio-based PA56[J]. China Textile Leader, 2017 (5): 98-100.
[11] 潘祖仁. 高分子化学[M]. 5版. 北京: 化学工业出版社, 2011: 9.
PAN Zuren. Polymer chemistry[M]. 5th ed. Beijing: Chemical Industrial Press, 2011:9.
[12] GEORGE Wypych. Handbook of solvents[M]. Toronto: Chem Tec Publishing, 2001: 261-266.
[13] MARK James E. Polymer handbook[M]. Oxford: Oxford University Press Inc, 1999: 181.
[1] WANG Jianming, LI Yongfeng, HAO Xinmin, YAN Jinlong, QIAO Rongrong, WANG Meihui. Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66 [J]. Journal of Textile Research, 2021, 42(08): 1-7.
[2] YANG Tingting, GAO Yuanbo, ZHENG Yi, WANG Xueli, HE Yong. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber [J]. Journal of Textile Research, 2021, 42(04): 1-7.
[3] SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32.
[4] XIANG Guodong, GAO Qingwen, DENG Qianqian, ZHANG Xuzhen, WANG Xiuhua. Preparation and performance of easy cationic dye-modified polyester by solid-phase polycondensation [J]. Journal of Textile Research, 2019, 40(04): 21-25.
[5] LI Bo, YAO Jinbo, NIU Jiarong, WANG Le, FENG Mao, SUN Yanli. Preparation of wool keratin solution by reducing agent-formic acid process [J]. Journal of Textile Research, 2019, 40(03): 1-7.
[6] . Crystallization behavior of bio-based polyamide 56 fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 7-13.
[7] . Effects of hydrostatic pressure on rheological behavior of PET with different intrinsic viscosity [J]. Journal of Textile Research, 2015, 36(06): 13-17.
[8] . Removal of on-cellulose component of bamboo material by formic acid [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .