Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 178-185.doi: 10.13475/j.fzxb.20201205708

• Machinery & Accessories • Previous Articles     Next Articles

Automatic bobbin changing technology for circular weft knitting machines

TU Jiajia1,2, SUN Lei1, MAO Huimin1, DAI Ning1, ZHU Wanzhen1, SHI Weimin1()   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. College of Automation, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou, Zhejiang 310053, China
  • Received:2020-12-21 Revised:2022-03-13 Online:2022-07-15 Published:2022-07-29
  • Contact: SHI Weimin E-mail:swm@zstu.edu.cn

Abstract:

Facing the problems such as low automation, high labor intensity and high labor cost associated with traditional manual cylinder changing, a new automatic cylinder changing scheme based on truss robot and bobbin changing manipulator was proposed. According to the bionic technology of manual changing the bobbin, the mechanical structure of the truss robot and the bobbin changing manipulator was designed and a laboratory testing machine was developed, taking in to considerations of the factors such as the layout of the production workshop, the structure of the bobbin, the type of the bobbin and the changing period, the process flow and the electrical principle diagram of the automatic bobbin changing. The control algorithm of bobbin change based on AS320T module and servo motor was established, and the function of automatic bobbin change was achieved by using a touch-screen as man-machine interface. The research results show that the control technology can meet the requirements on precision, stability and repeatability of the automatic bobbin changing of the circular weft knitting machine, and realize the function of "automatic bobbin changing with manual thread joining" for the circular weft knitting machine, which is significant in solving the problems in traditional manual bobbin changing.

Key words: circular weft knitting machine, automatic bobbin changing, bobbin holder, bobbin, truss robot, bobbin changing manipulator

CLC Number: 

  • TP103.7

Fig.1

Sketch map of frame structure"

Fig.2

Structure diagram of automatic bobbin changing system for circular weft knitting machine"

Fig.3

Simulation structure of truss robot"

Fig.4

Structure drawing of barrel changing manipulator"

Fig.5

Wiring diagram of master control module"

Tab.1

Types and parameters of servo motor"

序号 名称 电动机型号 输入电源
(220 V)
额定输出/
kW
1 X GYH302C6-TC2 三相 3.0
2 Y GYB751D5-RC2 单相 0.75
3 Z GYG152C5-RG2-B 三相 1.5
4 A、B位 GYB751D5-RC2 单相 0.75
5 撑爪 GYB201D5-RC2-B 单相 0.2

Fig.6

Flow chart of automatic bobbin changing for frame of circular weft knitting machine"

Fig.7

Human-computer interface of drum changer"

Fig.8

Physical drawing of bobbin changing mechanismin circular weft knitting machine"

Tab.2

Test data of X, Y, and Z axis"

序号 脉冲数/个 测量距离/mm 理论距离/mm 误差/mm
X Y Z X Y Z X Y Z X Y Z
1 0 0 0 0.0 0.0 0.0 0.0 0.2 -0.2 0.0 -0.2 0.2
2 50 100 100 14.5 2.0 10.0 14.8 2.1 10.0 -0.3 -0.1 0.0
3 100 200 200 29.5 4.0 21.0 29.6 4.1 20.2 -0.1 -0.1 0.8
4 150 300 300 45.5 6.0 30.5 44.4 6.0 30.4 1.1 0.0 0.1
5 200 400 400 59.0 8.0 40.5 59.2 7.9 40.6 -0.2 0.1 -0.1
6 250 500 500 74.0 10.0 50.5 74.0 9.8 50.8 0.0 0.2 -0.3
7 300 600 600 89.0 12.0 60.8 88.8 11.7 61.0 0.2 0.3 -0.2
8 350 700 700 105.0 14.5 70.7 103.6 13.7 71.2 1.4 0.8 -0.5
9 400 800 800 117.5 16.0 81.0 118.4 15.6 81.4 -0.9 0.4 -0.4
10 450 900 900 134.0 17.0 92.0 133.2 17.5 91.6 0.8 -0.5 0.4
11 500 1 000 1 000 148.0 19.0 103.0 148.0 19.4 101.7 0.0 -0.4 1.3
12 550 2 000 2 000 161.0 38.0 202.0 162.8 38.6 203.6 -1.8 -0.6 -1.6
13 600 3 000 3 000 178.0 57.5 306.5 177.6 57.8 305.5 0.4 -0.3 1.0
14 650 4 000 4 000 191.0 76.0 407.5 192.4 77.0 407.4 -1.4 -1.0 0.1
15 700 5 000 5 000 206.0 97.0 508.8 207.2 96.2 509.3 -1.2 0.8 -0.5
16 750 6 000 6 000 221.5 115.0 611.8 222.0 115.4 611.2 -0.5 -0.4 0.6
17 800 7 000 7 000 237.0 135.5 712.5 236.8 134.6 713.1 0.2 0.9 -0.6
18 850 8 000 8 000 253.0 153.5 815.0 251.6 153.8 815.0 1.4 -0.3 0.0
19 900 9 000 9 000 267.0 172.5 918.0 266.3 173.0 916.9 0.7 -0.5 1.1
20 1 000 10 000 10 000 296.0 192.0 1 019.0 295.9 192.2 1 018.8 0.1 -0.2 0.2
[1] 蒋高明, 高哲, 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017, 38(10): 177-183.
JIANG Gaoming, GAO Zhe, GAO Ziyue. Research advance of knitting intelligent manufacturing[J]. Journal of Textile Research, 2017, 38(10): 177-183.
[2] 胡旭东, 沈春娅, 彭来湖, 等. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-176.
HU Xudong, SHEN Chunya, PENG Laihu, et al. Intelligent manufacturing and standard about interoperability verification of knitting machine[J]. Journal of Textile Research, 2017, 38(10): 172-176.
[3] 卢茂忠, 吴载阳. 一种针织圆机用编织机: CN201811293707.0[P]. 2018-11-01.
LU Maozhong, WU Zaiyang. The utility model relates to a knitting machine for circular knitting machine: CN201811293707.0[P]. 2018-11-01.
[4] 邹鲲, 佘娟, 白延星. 智能纱架多机械手换纱系统设计[J]. 机床与液压, 2015, 43(3): 60-63.
ZOU Kun, SHE Juan, BAI Yanxing. Design of replacing yarn system of intelligent creel multi-robot[J]. Machine Tool & Hydraulics, 2015, 43(3): 60-63.
[5] 佘娟, 智能纱架的控制系统设计[D]. 上海: 东华大学, 2014:18-22.
SHE Juan. Design on control system of the intelligent creel robot[D]. Shanghai: Donghua University, 2014:18-22.
[6] 顾颖佳. 智能纱架机械手系统研制[D]. 上海: 东华大学, 2013:8-12.
GU Yingjia. The design of the system of the intelligent creel robot[D]. Shanghai: Donghua University, 2013:8-12.
[7] 张洪, 魏毅, 陈瑞, 等. 整经机筒子架自动换筒机器人系统研发[J]. 上海纺织科技, 2020, 48(6): 10-13,16.
ZHANG Hong, WEI Yi, CHEN Rui, et al. Research and development of automatic barrel changing robot system for warping machine's barrel frame[J]. Shanghai Textile Science & Technology, 2020, 48(6): 10-13, 16.
[8] 梅顺齐, 胡贵攀, 王建伟, 等. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171.
MEI Shunqi, HU Guipan, WANG Jianwei, et al. Analysis of some key technology basis for intelligent textile manufacturing and its equipment[J]. Journal of Textile Research, 2017, 38(10): 166-171.
[9] 胡旭东, 沈春娅. 针织行业的智能制造及其实践[J]. 针织工业, 2019 (8): 1-6.
HU Xudong, SHEN Chunya. Intelligent manufacturing and practice in knitting industry[J]. Knitting Industries, 2019 (8): 1-6.
[10] 廖能解, 马平, 李健洪, 等. 上下料桁架机器人仿真研究[J]. 机床与液压, 2019, 47(21): 9-14,33.
LIAO Nengjie, MA Ping, LI Jianhong, et al. Simulation study on loading and unloading material truss robot[J]. Machine Tool & Hydraulics, 2019, 47(21): 9-14, 33.
[11] 郭志良. 数控车床桁架机器人上下料系统设计研究[D]. 大连: 大连理工大学, 2019:8-10.
GUO Zhiliang. Design and study of gantry robot system for loading and unloading of CNC lathe[D]. Dalian: Dalian University of Technology, 2019:8-10.
[12] 杨中成. 台达高阶泛用型控制器AS300系列在全自动套袋机上的应用[J]. 智能机器人, 2018 (1): 56-58.
YANG Zhongcheng. Application of Delta high-order universal controller AS300 series in full-automatic bagging machine[J]. Intelligent Robot, 2018 (1): 56-58.
[1] LUO Hailin, FU Yaqin, LIU Ke. Structural design of automatic silk reeling machine for direct silk winding [J]. Journal of Textile Research, 2020, 41(08): 115-120.
[2] JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162.
[3] . Inspection of remaining yarn on bobbin based on odd Gabor filters [J]. Journal of Textile Research, 2018, 39(10): 138-142.
[4] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
[5] . Engineering plant adn process for dyeing of polyester bobbins in supercritical CO2 fluid [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 86-90.
[6] . Needle drive design of circular weft knitting machine based on high speed serial bus [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 110-114.
[7] . Design of automatic bottom thread replacing system in super multi-head embroidery machine [J]. Journal of Textile Research, 2015, 36(04): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .