Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (11): 37-45.doi: 10.13475/j.fzxb.20240101001

• Fiber Materials • Previous Articles     Next Articles

Preparation and thermal management performance of thermoregulated fabric based on polyvinyl butyral/polyethylene glycol coaxial nanofiber membrane

LI Han, WANG Haixia(), ZHANG Xu, LIU Liping, LIU Xiaokun   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2024-01-08 Revised:2024-04-02 Online:2024-11-15 Published:2024-12-30
  • Contact: WANG Haixia E-mail:hxwang@tiangong.edu.cn

Abstract:

Objective In order to enhance the thermal comfort properties of textiles, this study employs the coaxial electrospinning method to fabricate a composite nanofibrous membrane with polyvinyl alcohol formaldehyde (PVB) as the skin layer and PEG2000 as the core layer (PVB/PEG). Simultaneously, a sandwiched phase change heat storage composite fabric is designed using the as-prepared PVB/PEG nanofibrous membranes. The fabric exhibits excellent heat storage and release properties and offers an effective thermoregulated effect.

Method Coaxial electrospinning technology was employed to fabricate PVB/PEG nanofibrous membranes with various fiber skin/core ratios. Using nanofibers with fiber skin/core (2∶1) ratio as the sandwiched layers, single-layer (T1), double-layer (T2), and triple-layer (T3) PVB/PEG composite fabrics were prepared. Phase change enthalpy, thermal storage performance, and fabric's thermal management ability were tested by SEM, TEM, DSC, thermal infrared imaging, and thermocouples.

Results The PVB/PEG nanofibers had a continuous core-shell structure with diameters ranging from 244 to 372 nm, and phase change enthalpy is between 27-47 J/g. The phase change enthalpy of T1, T2, and T3 fabrics ranged from 6-14 J/g and were closely related to the PEG contents in the nanofibers. The fabrics maintained good shape stability at 65 ℃ and thermal energy storage and temperature regulation capabilities keep stable after 100 thermal cycles, demonstrating the composite fabric's repeatability. The 50 ℃ thermal buffering platform demonstrated the fabric's good temperature-regulating effect, and the thermal buffering time depends on the amount of nanofiber membrane layers.

Conclusion The composite fabrics ensure good thermal buffering effects, and they reduce the fabric's breathability and moisture permeability at loading triple-layered nanofibrous membranes. Achieving balance of thermal comfort and fabric properties is of importance in obtaining the satisfied nanofiber diameter, phase change material content, and fabric thickness. This opens a promising application in personal thermal management textiles.

Key words: phase change material, thermal energy storage, coaxial electrostatic spinning, composite fabric, air permeability, moisture permeability, polyprophylene nonwoven fabric

CLC Number: 

  • TS179

Fig.1

Schematic preparation diagram of PVB/PEG nanofiber and sandwiched fabric"

Fig.2

SEM images (a) and TEM image (VS∶VC=2∶1) (b) of PVB/PEG coaxial nanofiber"

Fig.3

DSC curves of PVB/PEG coaxial nanofibers at different VS∶VC and washing times (a) and fabrics with different thicknesses (b)"

Tab.1

DSC data for PVB/PEG coaxial nanofibers at different VS∶VC ratios"

样品 Tmo/℃ Tmp/℃ Tme/℃ ΔHm/(J·g-1) Tco/℃ Tcp/℃ Tce/℃ ΔHc/(J·g-1)
PEG2000 52.1 59.3 63.7 116.1 37.4 31.5 27.1 114.0
VSVC=1∶1 51.5 60.2 64.2 47.1 36.1 31.4 26.6 43.7
VSVC=2∶1 51.2 58.5 62.3 35.1 34.4 30.5 26.0 30.8
VSVC=3∶1 52.2 58.8 62.9 27.6 35.8 30.8 26.1 23.8
VSVC=4∶1 51.8 55.0 58.0 3.2 24.8 21.6 16.8 1.5
洗涤30 min
(VSVC为2∶1)
50.6 57.6 61.2 34.9 32.8 29.2 25.6 30.7
洗涤60 min
(VSVC为2∶1)
50.3 57.8 61.3 34.8 33.0 28.5 23.7 30.7

Tab.2

DSC data for fabric with different thicknesses"

样品 Tmo /℃ Tmp/℃ Tme/℃ ΔHm/(J·g-1) Tco/℃ Tcp/℃ Tce/℃ ΔHc/(J·g-1)
PVB/PEG(VSVC为2∶1)
纳米纤维
51.2 58.5 62.3 35.1 34.4 30.5 26.0 30.8
T1 50.4 57.4 62.3 6.2 38.4 31.1 26.3 5.8
T2 54.6 63.6 68.9 11.7 36.4 29.0 23.2 11.1
T3 54.3 63.8 69.2 14.0 37.0 29.1 23.1 13.4

Fig.4

Shape stability of PEG2000, nanofiber (VS∶VC=2∶1) and fabrics of T1, T2, T3"

Fig.5

Heat storage and heat release performance in thermal convection (a) and heat conduction (b) condition for T1, T2, and T3"

Fig.6

Different layer fabrics with 100 times heat storage (a) and release (b) cycles"

Fig.7

Infrared thermal image of sandwiched fabrics of different thicknesses"

Tab.3

Air permeability and moisture permeability of sandwiched fabrics"

样品 透气率/
(mm·s-1)
透湿率/
(g·m-2 ·h-1)
空白布样 2 100±10 353±0.1
PVB/PEG纳米纤维
(VSVC为2∶1)
28±0.5 194±0.1
T1 26±0.5 181±0.1
T2 17±0.5 162±0.1
T3 14±0.5 127±0.1

Fig.8

Mechanical properties of fabrics"

[1] SONG S, ZHAO T, QIU F, et al. Natural microtubule encapsulated phase change material with high thermal energy storage capacity[J]. Energy, 2019, 172: 1144-1150.
[2] LIANG J, ZHANG X, JI J. Hygroscopic phase change composite material: a review[J]. Journal of Energy Storage, DOI:10.1016/j.est.2021.102395.
[3] MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008, 28(11/12): 1536-1550.
[4] 杜吉辉, 苏云, 刘广菊, 等. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(4): 172-178.
DU Jihui, SU Yun, LIU Guangju, et al. Research and design of temperature-control intelligent thermal gloves with wearing comfort[J]. Journal of Textile Research, 2023, 44(4): 172-178.
[5] ESMAEILZADEH Z, REZAEI B, MOUSAVI SHOUSHTARI A, et al. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure[J]. Advances in Polymer Technology, 2018, 37(1): 185-193.
[6] LU P, CHEN W, ZHU M, et al. Embedding lauric acid into polystyrene nanofibers to make high-capacity membranes for efficient thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7249-7259.
[7] REZAEI B, GHANI M, ASKARI M, et al. Fabrication of thermal intelligent core/shell nanofibers by the solution coaxial electrospinning process[J]. Advances in Polymer Technology, 2014. DOI:10.1002/adv.21534.
[8] WANG N, CHEN H, LIN L, et al. Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning[J]. Macromolecular Rapid Communications, 2010, 31(18): 1622-1627.
doi: 10.1002/marc.201000185 pmid: 21567573
[9] WU J, WANG M, DONG L, et al. Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7873-7882.
[10] VAN Do C, NGUYEN T T T, PARK J S. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics[J]. Solar Energy Materials and Solar Cells, 2012, 104: 131-139.
[11] FENG W, ZHANG Y S, SHAO Y W, et al. Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles[J]. European Polymer Journal, 2021. DOI:10.1016/j.eurpolymj.2020.110245.
[12] LU Y, XIAO X, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019, 355: 532-539.
[13] LI S, WANG H, MAO H, et al. Light-to-thermal conversion and thermoregulated capability of coaxial fibers with a combined influence from comb-like polymeric phase change material and carbon nano-tube[J]. ACS Appl Mater Interfaces, 2019, 11(15): 14150-14158.
[14] LI S Q, WANG H X, MAO H Q, et al. Enhanced thermal management performance of comb-like polymer/boron nitride composite phase change materials for the thermoregulated fabric application[J]. Journal of Energy Storage, 2021. DOI:10.1016/j.est.2021.102826.
[15] 张晋, 张林军, 解云川, 等. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(7): 26-32.
ZHANG Jin, ZHANG Linjun, XIE Yunchuan, et al. Preparation and performance of poly( vinylidene fluoride-trifluoroethylene) piezoelectric modified fiber membrane for long-lasting protective masks[J]. Journal of Textile Research, 2023, 44(7): 26-32.
[16] 葛铖, 郑元生, 刘凯, 等. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(3): 36-41.
GE Cheng, ZHENG Yuansheng, LIU Kai, et al. Influence of voltage on forming process of electrospinning beaded fiber[J]. Journal of Textile Research, 2023, 44(3): 36-41.
[17] 孟鑫, 朱淑芳, 徐英俊, 等. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(9):20-26.
MENG Xin, ZHU Shufang, XU Yingjun, et al. In situ electrospinning recycled polyethylene terephthalate for paper documents conservation[J]. Journal of Textile Research, 2023, 44(9):20-26.
[18] JI R, ZHANG Q, ZHOU F, et al. Electrospinning fabricated novel poly (ethylene glycol)/graphene oxide composite phase-change nano-fibers with good shape stability for thermal regulation[J]. Journal of Energy Storage, 2021. DOI:10.1016/j.est.2021.102687.
[19] LI S Q, WANG H X, LIU L T, et al. On the crystallization behavior of a poly(stearyl methacrylate) comb-like polymer inside a nanoscale environment[J]. Crystengcomm, 2018, 20(45): 7348-7356.
[20] 王硕硕. 芯鞘结构智能调温纳米纤维的制备及其性能研究[D]. 杭州: 浙江理工大学, 2022:1-50.
WANG Shuoshuo. Preparation and performance investigation of core-sheath structure intelligent thermoregulating nanofibers[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:1-50.
[21] 张锟, 张顺花. 相变调温纤维的制备及其调温性能[J]. 合成纤维, 2022, 51(9): 16-21.
ZHANG Kun, ZHANG Shunhua. Preparation of phase change temperature regulating fiber and its temperature regulating performance[J]. Synthetic Fiber in China, 2022, 51(9): 16-21.
[22] 王青弘, 王迎, 郝新敏, 等. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(6): 144-151.
WANG Qinghong, WANG Ying, HAO Xinmin, et al. Processing optimization of composite fabrics deposited with electrospinning polyamide nano-fibers[J]. Journal of Textile Research, 2023, 44(6): 144-151.
[23] 朱晓荣, 向攸慧, 何佳臻, 等. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(6): 152-160.
ZHU Xiaorong, XIANG Youhui, HE Jiazhen, et al. Thermal storage and discharge performance of fabrics with phase change material under low-level radiant heat exposure[J]. Journal of Textile Research, 2023, 44(6): 152-160.
[24] 柳敦雷, 陆佳颖, 薛甜甜, 等. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(7): 18-25.
LIU Dunlei, LU Jiaying, XUE Tiantian. Preparation and properties of superhydrophobic thermal insulating polyester nanofiber / silica aerogel composite mem-branes[J]. Journal of Textile Research, 2023, 44(7): 18-25.
[1] LIU Wenjing, ZHANG Xinrui, ZHAO Xiaoman, HONG Jianhan, WANG Hongbo, HAN Xiao. Research progress in microcapsules of phase change materials [J]. Journal of Textile Research, 2024, 45(09): 235-243.
[2] ZHANG Qi, ZUO Lujiao, TU Jiani, NIE Meiting. Numerical simulation of air permeability of warp-knitted jacquard shoe upper materials [J]. Journal of Textile Research, 2024, 45(09): 78-83.
[3] KE Wentao, CHEN Ming, ZHENG Chuntian, SHI Xiaoli, ZHU Xinsheng. Preparation and properties of paraffin Pickering emulsion and its microcapsule phase change nonwoven materials [J]. Journal of Textile Research, 2024, 45(07): 130-139.
[4] FANG Xueming, DONG Zhijia, CONG Honglian, DING Yuqin. Design of variable porosity structure and evaluation of permeablity and moisture conductivity of single side weft knitted fabric [J]. Journal of Textile Research, 2024, 45(05): 51-59.
[5] HE Fang, GUO Yan, HAN Chaoxu, LIU Mingshen, YANG Ruirui. Composite technology and properties of fabrics for automotive seat [J]. Journal of Textile Research, 2024, 45(05): 79-84.
[6] YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98.
[7] MIAO Xue, WANG Yongjin, WANG Fangming. Correlation analysis on thermal resistance of inflatable thermal composite fabrics and air gap thickness [J]. Journal of Textile Research, 2023, 44(11): 176-182.
[8] WU Junqiu, LI Jun, WANG Min. Research progress in heat and moisture transfer model construction and application of cooling clothing incorporated with phase change materials [J]. Journal of Textile Research, 2023, 44(08): 234-241.
[9] ZHANG Luyang, SONG Haibo, MENG Jing, YIN Lanjun, LU Yehu. Influencing factors for thermal insulating properties of cotton gauze quilts [J]. Journal of Textile Research, 2023, 44(07): 79-85.
[10] ZHU Xiaorong, XIANG Youhui, HE Jiazhen, ZHAI Li'na. Thermal storage and discharge performance of fabrics with phase change material under low-level radiant heat exposure [J]. Journal of Textile Research, 2023, 44(06): 152-160.
[11] WANG Qinghong, WANG Ying, HAO Xinmin, GUO Yafei, WANG Meihui. Processing optimization of composite fabrics deposited with electrospinning polyamide nano-fibers [J]. Journal of Textile Research, 2023, 44(06): 144-151.
[12] XU Ruidong, LIU Hong, WANG Hang, ZHU Shifeng, QU Lijun, TIAN Mingwei. Construction and strain sensing properties of an ionic hydrogel composite fabric [J]. Journal of Textile Research, 2023, 44(06): 137-143.
[13] YANG Guangxin, ZHANG Qingle, LI Xiaochao, LI Siyu, CHEN Hui, CHENG Lu, XIA Xin. Preparation and property optimization of waterproof and moisture permeable membrane made from thermally induced fusion bonded polyurethane/polydimethylsiloxane [J]. Journal of Textile Research, 2023, 44(03): 28-35.
[14] ZHANG Shaoyue, YUE Jiangyu, YANG Jiale, CHAI Xiaoshuai, FENG Zengguo, ZHANG Aiying. Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes [J]. Journal of Textile Research, 2023, 44(03): 11-18.
[15] ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!