Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (12): 234-242.doi: 10.13475/j.fzxb.20240102302
• Comprehensive Review • Previous Articles Next Articles
LIU Yanping1, GUO Peiyao1, WU Ying1,2,3(
)
CLC Number:
| [1] | CHAN C H, PANG G K H. Fabric defect detection by fourier analysis[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1267-1276. |
| [2] | DI L, LONG H B, LIANG J Z. Fabric defect detection based on illumination correction and visual salient features[J]. Sensors(Basel), 2020. DOI: 10.3390/s20185147. |
| [3] | BUMRUNGKUN P. Defect detection in textile fabrics with snake active contour and support vector ma-chines[C]// 11th International Conference on Computer and Electrical Engineering (ICCEE).Tokyo: IOP Publishing Ltd, 2018(1195): 1742-6596. |
| [4] | WU Y, ZHOU J, AKANKWASA N T, et al. Fabric texture representation using the stable learned discrete cosine transform dictionary[J]. Textile Research Journal, 2019, 89(3): 294-310. |
| [5] | ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276. |
| [6] | 王斌, 李敏, 雷承霖, 等. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(1): 219-227. |
| WANG Bin, LI Min, LEI Chenglin, et al. Advances in deep learning-based fabric defect detection[J]. Journal of Textile Research, 2023, 44(1): 219-227. | |
| [7] | 程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7): 1428-1438. |
| CHENG Xu, SONG Chen, SHI Jingang, et al. A review of deep learning-based generalized target detection[J]. Acta Automation Sinica, 2021, 49(7): 1428-1438. | |
| [8] | ZHANG H W. Yarn-dyed fabric defect detection with yolov2 based on deep convolution neural net-works[C]// ZHANG L J, LI P F, GU D. IEEE 7th Data Driven Control and Learning Systems Confe-rence (DDCLS). Enshi: IEEE, 2018: 170-174. |
| [9] | JING J F, ZHUO D, ZHANG H H, et al. Fabric defect detection using the improved yolov3 model[J]. Journal of Engineered Fibers and Fabrics, 2020. DOI: 10.1177/1558925020908268. |
| [10] | ZHOU J, JING J F, ZHANG H H, et al. Real-time fabric defect detection algorithm based on s-yolov3 model[J]. Laser & Optoelectronics Progress, 2020. DOI: 10.3788/LOP57.161001. |
| [11] | DLAMINI S, KAO C Y, SU S L, et al. Development of a real-time machine vision system for functional textile fabric defect detection using a deep yolov4 model[J]. Textile Research Journal, 2022, 92(5/6): 675-690. |
| [12] | LUO X, NI Q, TAO R, et al. A light weight detector based on attention mechanism for fabric defect detec-tion[J]. IEEE Access, 2023(11): 33554-33569. |
| [13] | LIU Z F. Fabric defects detection based on ssd[C]// LIU S L, LI C L, DING S, et al. 2nd International Conference on Graphics and Signal Proceed-sing (ICGSP).Sydney: [s.n.]2018: 74-78. |
| [14] | XIE H S, ZHANG Y F, WU Z S. An improved fabric defect detection method based on ssd[J]. Aatcc Journal of Research, 2021(8): 182-191. |
| [15] | QIN Y J. Focus generator with score classification on fabric defect detection[C]// CHEN M, QI L, SUN Y.31st IEEE International Conference on Tools with Artificial Intelligence (ICTAI).Portland, OR: IEEE, 2019: 1708-1714. |
| [16] | LI F. Bag of tricks for fabric defect detection based on cascade R-CNN[J]. Textile Research Journal, 2021, 91(5/6): 599-612. |
| [17] | LI H H. Integrating deformable convolution and pyramid network in cascade R-CNN for fabric defect detec-tion[C]// ZHANG H, LIU L, ZHONG H, et al. IEEE International Conference on Systems, Man, and Cybernetics (SMC).Toronto: IEEE, 2020: 3029-3036. |
| [18] | HASHIMOTO Y, WATANABE Y, TAKANO H, et al. High diagnostic yield using advanced artificial intelligence in cytology of pancreatic cancer by eus-fna[J]. Gastroenterology, 2019, 156(6): S115-S115. |
| [19] | ZHAO J, ZHOU S, ZHENG Q, et al. Fabric defect detection based on transfer learning and improved faster R-CNN[J]. Journal of Engineered Fibers and Fabrics, 2022. DOI: 10.1177/15589250221086647. |
| [20] | CHEN M Q, YU L J, ZHI C, et al. Improved faster R-CNN for fabric defect detection based on gabor filter with genetic algorithm optimization[J]. Computers in Industry, 2022. DOI: 10.1016/j.compind.2021.103551. |
| [21] | HE D F, WEN J J, LAI Z H. Textile fabric defect detection based on improved faster R-CNN[J]. Aatcc Journal of Research, 2021, 8(SUPPL 1): 83-91. |
| [22] | KAHRAMAN Y, DURMUSOGLU A. Deep learning-based fabric defect detection: a review[J]. Textile Research Journal, 2023, 93(5/6): 1485-1503. |
| [23] | LIU Z F. Fabric defect detection based on faster R-CNN[C]// LIU X H, LI C L, LI B C, et al. 9th International Conference on Graphic and Image Processing (ICGIP). Qingdao: ICGIP, 2017: 10615. |
| [24] | 安萌, 郑飂默, 王诗宇, 等. 一种改进faster R-CNN的面料疵点检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1029-1033. |
| AN Meng, ZHENG Liaomo, WANG Shiyu, et al. An improved faster R-CNN method for fabric defect detection[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1029-1033. | |
| [25] | 晏琳, 景军锋, 李鹏飞. Faster rcnn模型在坯布疵点检测中的应用[J]. 棉纺织技术, 2019, 47(2): 24-27. |
| YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN model in blank fabric defect detec-tion[J]. Cotton Textile Technology, 2019, 47(2): 24-27. | |
| [26] | WU J, LE J, XIAO Z T, et al. Automatic fabric defect detection using a wide-and-light network[J]. Applied Intelligence, 2021, 51(7): 4945-4961. |
| [27] | 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(4): 51-57. |
| LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision[J]. Journal of Textile Research, 2020, 41(4): 51-57. | |
| [28] | 张丽瑶, 王志鹏, 徐功平. 基于SSD的织物疵点检测的研究[J]. 电子设计工程, 2020, 28(6): 40-44. |
| ZHANG Liyao, WANG Zhipeng, XU Gongping. Research on SSD-based fabric defect detection[J]. Electronic Design Engineering, 2020, 28(6): 40-44. | |
| [29] | ZHAO H Q, ZHANG T S. Fabric surface defect detection using se-ssdnet[J]. Symmetry-Basel, 2022. DOI: 10.3390/sym14112373. |
| [30] | ZHANG Y. Steel defect detection based on modified retinanet[C]// GAO Y, SHEN L Y. 26th International Conference on Pattern Recognition/8th International Workshop on Image Mining-Theory and Applica-tions (IMTA). Montreal: IEEE, 2022: 3572-3579. |
| [31] | LIANG H, YANG J L, SHAO M W. Fe-retinanet: small target detection with parallel multi-scale feature enhancement[J]. Symmetry-Basel, 2021. DOI: 10.3390/sym13060950. |
| [32] | CHENG X, YU J B. Retinanet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021. DOI: 10.1109/TIM.2020.3040485. |
| [33] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39 (4): 640-651. |
| [34] | ZHANG T S, MA H R. Clothnet: sensitive semantic segmentation network for fabric defect detection[J]. Textile Research Journal, 2023, 93(1/2): 103-115. |
| [35] | 马浩然, 张团善, 王峰, 等. 基于语义生成与语义分割的机织物疵点检测方法[J]. 轻工机械, 2023, 41(1): 66-73. |
| MA Haoran, ZHANG Tuanshan, WANG Feng, et al. A defect detection method for woven fabrics based on semantic generation and semantic segmentation[J]. Light Industry Machinery, 2023, 41(1): 66-73. | |
| [36] | ZHOU Z Y, YANG X F, JI J F, et al. Classifying fabric defects with evolving inception v3 by improved l2,1-norm regularized extreme learning machine[J]. Textile Research Journal, 2023, 93(3/4): 936-956. |
| [37] | SABEENIAN R S, PAUL E, PRAKASH C. Fabric defect detection and classification using modified vgg network[J]. Journal of The Textile Institute, 2023, 114(7): 1032-1040. |
| [38] | CELIK H I, DULGER L C, OZTAS B, et al. A novel industrial application of cnn approach: real time fabric inspection and defect classification on circular knitting machine[J]. Tekstil Ve Konfeksiyon, 2022, 32(4): 344-352. |
| [39] | 李学良, 杜玉红, 任维佳, 等. 基于近红外光谱和残差神经网络的异性纤维分类识别[J]. 纺织学报, 2023, 44(5): 84-92. |
| LI Xueliang, DU Yuhong, REN Weijia, et al. Classification and identification of anisotropic fibers based on near-infrared spectroscopy and residual neural network[J]. Journal of Textile Research, 2023, 44(5): 84-92. | |
| [40] | ZHAO X Q, ZHANG M, ZHANG J J. Ensemble learning-based cnn for textile fabric defects classifica-tion[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 664-678. |
| [41] | 贾小军, 叶利华, 邓洪涛, 等. 基于卷积神经网络的蓝印花布纹样基元分类[J]. 纺织学报, 2020, 41(1): 110-117. |
| JIA Xiaojun, YE Lihua, DENG Hongtao, et al. Convolutional neural network-based primitive classification of blue printed fabric pattern[J]. Journal of Textile Research, 2020, 41(1): 110-117. | |
| [42] | LAINE S, AILA T. Temporal ensembling for semi-supervised learning[J]. arXiv, 2016. DOI: 10.48550/arXiv.1610.02242. |
| [43] | TARVAINEN A. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[C]// VALPOLA H. 31st Annual Conference on Neural Information Processing Systems (NIPS). Long Beach, CA: Curran Associates Inc, 2017. DOI: 10.48550/arXiv.1703.01780. |
| [44] | MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993. |
| [45] | CHEN J M, YANG M, LING J. Attention-based label consistency for semi-supervised deep learning based image classification[J]. Neurocomputing, 2021(453): 731-741. |
| [46] | SHAO L H, ZHANG E H, MA Q R, et al. Pixel-wise semisupervised fabric defect detection method combined with multitask mean teacher[J]. IEEE Transactions on Instrumentation and Measurement, 2022. DOI: 10.1109/TIM.2022.3162286. |
| [47] | WEI C, LIANG J Z, LIU H, et al. Multi-stage unsupervised fabric defect detection based on dcgan[J]. Visual Computer, 2022, 39(12): 6655-6671. |
| [48] | HE X J, CHANG Z W, ZHANG L H, et al. A survey of defect detection applications based on generative adversarial networks[J]. IEEE Access, 2022(10): 113493-113512. |
| [49] | WEI W, DENG D X, ZENG L, et al. Real-time implementation of fabric defect detection based on variational automatic encoder with structure simi-larity[J]. Journal of Real-Time Image Processing, 2021, 18(3): 807-823. |
| [50] | OLIMOV B. Unsupervised deep learning-based end-to-end network for anomaly detection and localiza-tion[C]// SUBRAMANIAN B, KIM J.13th Interna-tional Conference on Ubiquitous and Future Networks (ICUFN). Barcelona: IEEE, 2022: 444-449. |
| [51] | TANG C W, FENG X X, WEN H T, et al. Semantic segmentation network for surface defect detection of automobile wheel hub fusing high-resolution feature and multi-scale feature[J]. Applied Sciences-Basel, 2021. DOI: 10.3390/app112210508. |
| [52] | 顾梅花, 刘杰, 李立瑶, 等. 结合特征学习与注意力机制的服装图像分割[J]. 纺织学报, 2022, 43(11): 163-171. |
| GU Meihua, LIU Jie, LI Liyao, et al. Combining feature learning and attention mechanism for garment image segmentation[J]. Journal of Textile Research, 2022, 43(11): 163-171. | |
| [53] | CHENG L, YI J Z, CHEN A B, et al. Fabric defect detection based on separate convolutional unet[J]. Multimedia Tools and Applications, 2023, 82(2): 3101-3122. |
| [54] | JEYARAJ P R, NADAR E R S. Effective textile quality processing and an accurate inspection system using the advanced deep learning technique[J]. Textile Research Journal, 2020, 90(9/10): 971-980. |
| [1] | CAI Liling, WANG Mei, SHAO Yibing, CHEN Wei, CAO Huaqing, JI Xiaofen. Intelligent customization recommendation for traditional Hanfu based on improved stack-generative adversarial network [J]. Journal of Textile Research, 2024, 45(12): 180-188. |
| [2] | LI Yang, ZHANG Yongchao, PENG Laihu, HU Xudong, YUAN Yanhong. Fabric defect detection based on improved cross-scene Beetle global search algorithm [J]. Journal of Textile Research, 2024, 45(10): 89-94. |
| [3] | LU Yinwen, HOU Jue, YANG Yang, GU Bingfei, ZHANG Hongwei, LIU Zheng. Single dress image video synthesis based on pose embedding and multi-scale attention [J]. Journal of Textile Research, 2024, 45(07): 165-172. |
| [4] | ZHU Lingyun, WANG Chenyu, ZHAO Yueying. Detection of fabric surface defects based on multi-metric-multi-model image voting [J]. Journal of Textile Research, 2024, 45(06): 89-97. |
| [5] | WEN Jiaqi, LI Xinrong, FENG Wenqian, LI Hansen. Rapid extraction of edge contours of printed fabrics [J]. Journal of Textile Research, 2024, 45(05): 165-173. |
| [6] | GU Meihua, HUA Wei, DONG Xiaoxiao, ZHANG Xiaodan. Occlusive clothing image segmentation based on context extraction and attention fusion [J]. Journal of Textile Research, 2024, 45(05): 155-164. |
| [7] | FU Caizhi, CAO Hongyan, LIAO Wenhao, LI Zhongjian, HUANG Qixiang, PU Sancheng. Yarn unevenness measurement method based on multi-view images [J]. Journal of Textile Research, 2024, 45(03): 49-57. |
| [8] | LU Weijian, TU Jiajia, WANG Junru, HAN Sijie, SHI Weimin. Model for empty bobbin recognition based on improved residual network [J]. Journal of Textile Research, 2024, 45(01): 194-202. |
| [9] | CHI Panpan, MEI Chennan, WANG Yan, XIAO Hong, ZHONG Yueqi. Single soldier camouflage small target detection based on boundary-filling [J]. Journal of Textile Research, 2024, 45(01): 112-119. |
| [10] | YANG Hongmai, ZHANG Xiaodong, YAN Ning, ZHU Linlin, LI Na'na. Robustness algorithm for online yarn breakage detection in warp knitting machines [J]. Journal of Textile Research, 2023, 44(05): 139-146. |
| [11] | GU Bingfei, ZHANG Jian, XU Kaiyi, ZHAO Songling, YE Fan, HOU Jue. Human contour and parameter extraction from complex background [J]. Journal of Textile Research, 2023, 44(03): 168-175. |
| [12] | LI Yang, PENG Laihu, LI Jianqiang, LIU Jianting, ZHENG Qiuyang, HU Xudong. Fabric defect detection based on deep-belief network [J]. Journal of Textile Research, 2023, 44(02): 143-150. |
| [13] | WANG Bin, LI Min, LEI Chenglin, HE Ruhan. Research progress in fabric defect detection based on deep learning [J]. Journal of Textile Research, 2023, 44(01): 219-227. |
| [14] | CHEN Jia, YANG Congcong, LIU Junping, HE Ruhan, LIANG Jinxing. Cross-domain generation for transferring hand-drawn sketches to garment images [J]. Journal of Textile Research, 2023, 44(01): 171-178. |
| [15] | AN Yijin, XUE Wenliang, DING Yi, ZHANG Shunlian. Evaluation of textile color rubbing fastness based on image processing [J]. Journal of Textile Research, 2022, 43(12): 131-137. |
|
||