Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 77-88.doi: 10.13475/j.fzxb.20250100402
• Invited Column: Intelligent Fiber and Fabric Device • Previous Articles Next Articles
JIANG Yalong, LI Gege, XUE Lu, CHENG Yu, YANG Yingkui(
)
CLC Number:
| [1] | WANG Z, SHI X, PENG H S. Alternating current electroluminescent fibers for textile displays[J]. National Science Review, 2023. DOI: 10.1093/nsr/nwac193. |
| [2] | TAN P, WANG H F, XIAO F R, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-28027-y. |
| [3] | ZHOU Z H, CHEN K, LI X S, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578. |
| [4] | MO F N, LIANG G J, HUANGZ D, et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical diffi-culties[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902151. |
| [5] | ZHANG T Y, WU J J, WANG Y C, et al. Perspective in textile energy storage integrated textile elements: textile materials, structure, and manufactured methods[J]. Advanced Energy Materials, 2024. DOI:10.1002/aenm.202470039. |
| [6] | ZHAI S L, KARAHAN H E, WEI L, et al. Textile energy storage: structural design concepts, material selection and future perspectives[J]. Energy Storage Materials, 2016, 3: 123-139. |
| [7] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741 pmid: 22096188 |
| [8] | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-15355-0. |
| [9] | JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699. |
| [10] | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
| [11] | AFROJ S, TAN S R, ABDELKADER A M, et al. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202000293. |
| [12] | HU L B, MANTIA F L, WU H, et al. Lithium-ion textile batteries with large areal mass loading[J]. Advanced Energy Materials, 2011, 1(6): 1012-1017. |
| [13] | HONG H, HU J Y, YAN X. UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27318-27326. |
| [14] | SHAHARIAR H, KIM I, BHAKTA R, et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters[J]. Smart Materials and Structures, 2020. DOI: 10.1088/1361-665X/ab8c25. |
| [15] | CIE C. Ink jet textile printing[D]. Amsterdam: Elsevier, 2015: 111-123. |
| [16] | KIM I, JU B, ZHOU Y, et al. Microstructures in all-inkjet-printed textile capacitors with bilayer interfaces of polymer dielectrics and metal-organic decomposition silver electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 24081-24094. |
| [17] | STEMPIEN Z, RYBICKI T, RYBICKI E, et al. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique[J]. Synthetic Metals, 2015, 202: 49-62. |
| [18] |
HUANG Y, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11(9): 8953-8961.
doi: 10.1021/acsnano.7b03322 pmid: 28813141 |
| [19] | PALCHOUDHURY S, RAMASAMY K, GUPTA R K, et al. Flexible supercapacitors: a materials perspec-tive[J]. Forntiers in Materials, 2019. DOI: 10.3389/fmats.2018.00083. |
| [20] |
LI Z, HUANG T Q, GAO W W, et al. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors[J]. ACS Nano, 2017, 11(11): 11056-11065.
doi: 10.1021/acsnano.7b05092 pmid: 29035519 |
| [21] | ZHANG D. Advances in filament yarn spinning of textiles and polymers[M]. The Netherlands, 2014:19-23. |
| [22] | XIA Z, LI S, WU G Q, et al. Manipulating hierarchical orientation of wet-spun hybrid fibers via rheological engineering for Zn-ion fiber batteries[J]. Advanced Materials, 2022. DOI: 10.1016/j.cej.2023.148334. |
| [23] | ZHENG Y, MAN Z M, ZHANG Y, et al. High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene-polyaniline hierarchical fabric[J]. Advanced Fiber Materials, 2023, 5(5): 1759-1772. |
| [24] | KIM B, KONCAR V, DEVAUX E, et al. Electrical and morphological properties of PP and PET conductive polymer fibers[J]. Synthetic Metals, 2004, 146(2): 167-174. |
| [25] | REN J, ZHANG Y, BAI W Y, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance[J]. Angewandte Chemie International Edition, 2014, 53(30): 7864-7869. |
| [26] | HA S H, KIM S J, KIM H J, et al. Fibrous all-in-one monolith electrodes with a biological gluing layer and a membrane shell for weavable lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(15): 6633-6641. |
| [27] |
FANG X, WENG W, REN J, et al. A cable-shaped lithium sulfur battery[J]. Advanced Materials, 2016, 28(3): 491-496.
doi: 10.1002/adma.201504241 |
| [28] | WANG L, PAN J, ZHANG Y, et al. A Li-air battery with ultralong cycle life in ambient air[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704378. |
| [29] | ZHANG Y, JIAO Y D, LU L J, et al. An ultraflexible silicon-oxygen battery fiber with high energy density[J]. Angewandte Chemie International Edition, 2017, 56(44): 13741-13746. |
| [30] | DE B, YADAV A, KHAN S, et al. A facile methodology for the development of a printable and flexible all-solid-state rechargeable battery[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19870-19880. |
| [31] | LIU B, WANG X F, CHEN H T, et al. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries[J]. Scientific Reports, 2013. DOI: 10.1038/srep01622. |
| [32] | PU X, LI L X, SONG H Q, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electro-nics[J]. Advanced Materials, 2015, 27(15): 2472-2478. |
| [33] | LEE Y H, KIM J S, NOH J Y, et al. Wearable textile battery rechargeable by solar energy[J]. Nano Letters, 2013, 13(11): 5753-5761. |
| [34] | CHEN Y J, XU B G, WEN J F, et al. Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes[J]. Small, 2018. DOI: 10.1002/smll.201704373. |
| [35] | PAN Z H, YANG J, LI L H, et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor[J]. Energy Storage Materials, 2020, 25: 124-130. |
| [36] | MUN T J, KIM S H, PARK J W, et al. Wearable energy generating and storing textile based on carbon nanotube yarns[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.202000411. |
| [37] | WANG Z P, CHENG J L, GUAN Q, et al. All-in-one fiber for stretchable fiber-shaped tandem super-capacitors[J]. Nano Energy, 2018, 45: 210-219. |
| [38] | UZUN S, SEYEDIN S Y, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905015. |
| [39] | WANG C F, HE T, CHENG J L, et al. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004430. |
| [40] | HUANG Q Y, WANG D R, HU H, et al. Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201910541. |
| [1] | LI Duo, XIE Xiaowen, ZHANG Difan, WU Jingxia, LU Kai, CHEN Peining. Construction and electromagnetic properties of Wi-Fi dual-band fabric antenna [J]. Journal of Textile Research, 2025, 46(05): 10-16. |
| [2] | SHE Yemei, PENG Yangyang, WANG Fameng, PAN Ruru. Preparation and performance of flexible pressure sensor based on warp knitted spacer fabric [J]. Journal of Textile Research, 2025, 46(03): 158-166. |
| [3] | GUAN Tuxiang, WU Jian, BAO Ningzhong. Research progress in graphene fiber-based flexible supercapacitors prepared by microfluidic spinning [J]. Journal of Textile Research, 2023, 44(12): 205-215. |
| [4] | LI Ganghua, WANG Hang, SHI Baohui, QU Lijun, TIAN Mingwei. Construction of flexible electronic fabric and its pressure sensing performance [J]. Journal of Textile Research, 2023, 44(02): 96-102. |
| [5] | NIE Wenqi, SUN Jiangdong, XU Shuai, ZHENG Xianhong, XU Zhenzhen. Research progress in supercapacitors based on flexible textile fibers [J]. Journal of Textile Research, 2022, 43(07): 200-206. |
| [6] | CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62. |
| [7] | . Preparation and electrochemical characterization of composite separator for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 23-28. |
|
||