纺织学报 ›› 2017, Vol. 38 ›› Issue (05): 128-133.doi: 10.13475/j.fzxb.20160304807

• 机械与器材 • 上一篇    下一篇

凝聚槽类型对转杯内气流场影响的数值模拟

  

  • 收稿日期:2016-03-24 修回日期:2017-02-06 出版日期:2017-05-15 发布日期:2017-05-16

Numerical simulation of influence of groove type on flow field knside rotor

  • Received:2016-03-24 Revised:2017-02-06 Online:2017-05-15 Published:2017-05-16

摘要:

为探究G、T、U、S型凝聚槽对36mm直径转杯内气流场的影响,在软件Fluent中对三维流场进行了数值计算分析。结果表明:在相同工艺条件下,凝聚槽1周(0o~360o) 范围内,4种槽型的速度大小为G型>T型>U型>S型,在0°与360°位置处静压大小为G型>S型>U型>T型,其余各角度位置处静压大小为S型>U型>T型>G型。各槽型内气流静压和速度趋势基本一致,以T型槽为例,输棉通道内的静压位于-32886.15∽18224.56 Pa之间,转杯内的静压大部分处于-13719.63 ∽ -7330.80 Pa之间;输棉通道内的气流随着管道直径的减小而加速运动,在出口处达到最大值261.81m/s。

关键词: 转杯纺, 凝聚槽, 数值模拟, 气流场, 速度, 静压

Abstract:

The influence of groove type on high speed airflow during rotor spun yarn was investigated. Airflow speed and static pressure in four types of groove, such as G, T, U and S of the 36 mm diameter rotor, were studied by Fluent software. The results show that under the same conditions, speeds in four groove size are G>T>U>S within the range from 0° to 360°.  in groove. At 0° and 360° position, the static pressures are G>S>U>T. While for the rest of the angle position, the static pressures are S>U> T>G. Taking T groove as example, static pressures within the transfer channed are between  -32886.15Pa and 18224.56 Pa, static pressures within the rotor are between  -13719.63 Pa and -7330.80 Pa . The airstream accelerated from the transfer channel inlet to the outlet with the decrease of the pipe, and reached the largest value to 261.81m/s at the outlet.

Key words: rotor spinning, groove, numerical simulation, airflow field, speed, pressure

[1]张百祥,周慈念.转杯纺纱[M].北京:纺织工业出版社, 1993:61-65. ZHANG Baixiang, ZHOU Cinian. Rotor Spinning [M]. Beijing:Textile Industry Press,1993:61-65. [2]叶鸿玑,徐潼.转杯纺纱[M].济南:济南出版社, 1989:8-13. Ye Hong Ji, Xu Tong rotor spinning [M] Jinan: Jinan Press, 1989: 8-13. [3]曾泳春,郁崇文. 喷气纺喷嘴中气流流动的数值计算[J]. 东华大学学报(自然科学版),2002,05:11-16. Zeng Yong Chun, Yu Chongwen value of airflow jet spinning nozzle computing [J] of Donghua University (Natural Science), 2002,05: 11-16. [4]邹专勇,俞建勇,薛文良,程隆棣. 喷气涡流纺喷嘴内部 三维流场的数值研究[J]. 纺织学报,2008,02:86-89. Zou Yong specifically, Yujian Yong, Xue Wenliang, Cheng Longdi Numerical study of jet vortex spinning nozzle inside the three-dimensional flow field [J] Textile Sinica, 2008,02: 86-89. [5]梁海顺,杨昆,王贯超,高超,陈赞. 基于NUMECA技术 的喷气织机主喷嘴内部流场数值模拟[J]. 纺织器 材,2008,03:12-16. Lianghai Shun, Yang Jun, Wang Guan super, superb, Chan Chan NUMECA technology Main Nozzle internal flow field numerical simulation based on [J] textile equipment, 2008,03: 12-16. [6]林惠婷,汪军,曾泳春. 输棉通道几何参数对转杯纺气流 场影响的数值研究[J]. 纺织学报,2015,02:98-104. Lin Huiting, Wang Jun, who lost Yong Chun Numerical Study cotton spinning channel geometry on the flow field [J] Textile Sinica, 2015,02: 98-104. [7]王福军.计算流体动力学分析[M].北京:清华大学出版 社,2004:7-9. WANG Fujun. Computational fluid dynamics analysis [M]. Beijing:Tsinghua University Press,2004:7-9. [8]朱红均,林远华,谢龙汉.FLUENT流体分析及仿真实 用教程[M].北京:人民邮电出版社,2010:237-238. ZHU Hongjun, LIN Yuanhua, XIE Longhan. FLUENT fluid analysis and simulation practical tutorial [M]. Beijing: The People’s Posts and Telecommunications Press, 2010: 237-238. [9]张百祥,秦洪奇,陈丽珍.气流纺回转纱条张力的测试 与分析[J].东华大学学报(自然科学版),1981,1:008. Zhang Baixiang, Qin Hongqi, Chen Lizhen. Rotor spinning yarn tension test and analysis [J]. Journal of Donghua University (Natural Science), 1981, 1: 008. [10]汪军,黄秀宝.转杯纺捻度传递长度的解析研究[J]. 中国纺织大学学报,2000,01:64-69. WANG Jun, HUANG Xiubao. Analytical studies spinning twist length transfer[J]. China Textile University, 2000, 01: 64-69. [11]黄秀宝,梁金茹.捻度传递长度缠绕纤维与成纱质量 [J].纺织学报,1983,11:5-11+2. HUANG Xiubao, LIANG Jinru. Twist transfer length wound fiber and yarn quality[J]. Journal of Textile Reswarch, 1983, 11: 5-11+2.

[1] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[2] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[3] 邹守宝 袁建波. 基于惯性离心力的径向直线拉伸射流纺丝方法[J]. 纺织学报, 2018, 39(06): 19-23.
[4] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[5] 吴杰伟 孙志宏 郁强 陈燕婷 邱夷平 周其洪 陈晓川. 等覆盖率变径编织方法[J]. 纺织学报, 2018, 39(04): 54-62.
[6] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[7] 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61.
[8] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[9] 韩瑞叶 杨瑞华 薛元 高卫东. 数码转杯纺的Stearns-Noechel配色模型[J]. 纺织学报, 2017, 38(12): 27-32.
[10] 陈洪立 李炯 金玉珍 武传宇 胡旭东. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
[11] 杨瑞华 薛元 郭明瑞 王鸿博 周建 高卫东. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
[12] 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154.
[13] 郭子婧 刘秀明 房宽峻 蔡玉青. 染料/聚合物复合共聚物微球的制备[J]. 纺织学报, 2017, 38(07): 80-84.
[14] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[15] 扈昕瞳 张玉井 孟婥 孙以泽. 编织锭子放线速度对纱线张力调控的建模与影响[J]. 纺织学报, 2017, 38(06): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!