纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 72-76.doi: 10.13475/j.fzxb.20170602605

• 染整与化学品 • 上一篇    下一篇

采用N-甲基吡咯烷酮的苎麻纤维柔软处理

#br#   


  • 收稿日期:2017-06-08 修回日期:2019-01-23 出版日期:2019-04-15 发布日期:2019-04-16

Softness treatment of ramie fibers by N-methyl-2-pyrrolidone

  • Received:2017-06-08 Revised:2019-01-23 Online:2019-04-15 Published:2019-04-16

摘要:

为提升苎麻纤维的柔软性,采用N-甲基吡咯烷酮(NMP)对其进行处理。探讨不同NMP 质量分数、处理时间和温度对苎麻纤维强伸性能和柔软性能的影响,并借助X 射线衍射仪、红外光谱仪和扫描电子显微镜对苎麻纤维进行表征与分析。结果表明:当NMP 质量分数、处理时间或温度任一因素增加,苎麻纤维的断裂伸长率随之增加,而断裂强度随之降低;当NMP 质量分数或处理时间增加时,苎麻纤维的断裂回转数会先增加后减少,当处理温度升高时,断裂回转数会先增加后保持稳定;在NMP 质量分数为15%,处理时间为60 min,处理温度为80 ℃的较佳工艺条件下,处理后苎麻纤维的结晶度从80. 37%降至70. 19%,而其化学基团保持不变,纤维表面纵向沿竖纹出现劈裂。

关键词: 苎麻纤维, N-甲基吡咯烷酮, 柔软处理, 柔软性, 结晶度

Abstract:

In order to improve the softness of ramie fibers, N-methyl-2-pyrrolidone(NMP)was used to treat them. The effects of NMP mass fraction, time and temperature on the mechanical properties and softness of ramie fibers were studied. Meanwhile, the ramie fibers were characterized by X-ray diffractometer, infrared spectrometer and scanning electron microscope. Results show that when the NMP mass fraction, treatment time or temperature increases, the elongation of ramie fibers increases, and the tensile strength decreases. When the NMP mass fraction or the time increases, the twisting number of ramie fiber increases first and then decreases. When temperature increases, the twisting number increases quickly and then keeps stable. The optimum treatment conditions are NMP mass fraction of 15%, time of 60 min and temperature of 80 ℃, the crystallinity of treated ramie fibers decreases from 80. 37% to 70. 19%, but the chemical groups remain unchanged, and cracks appear along the vertical lines on the surface of ramie fibers.

Key words: ramie fiber, N-methyl-2-pyrrolidone, softness treatment, softness, crystallinity

[1] 刘立军, 王辉, 彭定祥. 苎麻产量和品质影响因素研究进展[J]. 中国麻业科学, 2010, 32(5): 275-281.
LIU Lijun, WANG Hui, PENG Dingxiang. Progress of Study on Related Factors for Yield and Quality of Ramie in China[J]. Plant fiber science in China, 2010, 32(5): 275-281.
[2] 张明明, 张斌. 苎麻纤维柔软改性研究进展[J]. 上海纺织科技, 2015, 43(4): 1-4.
ZHANG Mingming, ZHANG Bin. The research progress of soft modification of ramie fiber[J]. Shanghai Textile Science & Technology, 2015, 43(4): 1-4.
[3] 徐海燕. 国内苎麻纤维化学改性现状研究[J]. 河南工程学院学报:自然科学版,2012, 24(2): 20-24.
XU Haiyan. A review: chemical modification on ramie fiber in China[J]. Journal of Henan Institution of Engineering: Natural Science Edition, 2012, 24(2): 20-24.
[4] 岳军, 熊立堃, 苏立炜, 等. 液固相法纤维素氨基甲酸酯的合成与表征[J]. 高分子材料科学与工程, 2015, 31(11): 44-49.
YUE Jun, XIONG Likun, SU Liwei, et al. Synthesis and characterization of cellulose carbamate by liquid-solid phase[J]. Polymer materials science and engineering, 2015, 31(11): 44-49.
[5] 王革辉, 王芳, 赵涛. 纤维素酶处理对高支纯苎麻织物性能的影响[J]. 纺织学报, 2010, 31(9): 45-48.
WANG Gehui, WANG Fang, ZHAO Tao. Effects of enzymatic treatment on properties of high count ramie fiber[J]. Journal of Textile Research, 2010, 31(9): 45-48.
[6] 喻红芹, 张琦, 李虹, 等. 苎麻纤维改性方法的对比分析[J]. 河南工程学院学报:自然科学版, 2015, 27(3): 1-4.
YU Hongqin, ZHANG Qi, LI Hong, et al. Comparison of modification methods of ramie fiber[J].Journal of Henan Insititution of Engineering:Natural Science Edition, 2015, 27(3): 1-4.
[7] 张华, 冯家好, 李俊. 液氨处理对苎麻织物结构和性能的影响[J]. 印染, 2008, (7): 5-8.
ZHANG Hua, FENG Jiahao, LI Jun. Effect of liquid ammonia and caustic mercerization on structures and properties of ramie fiber[J]. Dyeing & Finishing, 2008, (7): 5-8.
[8] 胡仁志, 张波兰, 张永金,等. 离子液体改性苎麻纤维性质研究[J]. 武汉科技学院学报, 2004(5): 25-28.
HU Renzhi, ZHANG Bolan, ZHANG Yongjin, et al. Study on the properties of ramie fiber modified with ionic liquid[J]. Journal of Wuhan University of Science and Engineering, 2004, 17(5): 25-28.
[9] 张明明, 张斌, 郁崇文, 等. NMMO处理对苎麻纤维性能的影响[J]. 东华大学学报:自然科学版, 2015, 41(3): 293-296.
ZHANG Mingming, ZHANG Bin, YU Chongwen, et al. Effect of NMMO on property of ramie fibers[J]. Journal of Donghua University:Natural Science Edition, 2015, 41(3): 293-296.
[10] 熊亚, 张斌, 郁崇文, 等. DMSO/TEAC对苎麻纤维柔软处理探究[J]. 中国麻业科学, 2017, 39(1): 44-49.
XIONG Ya, ZHANG Bin, YU Chongwen, et al. The softing property of ramie fiber treated by DMSO/TEAC[J], Plant fiber science in China, 2017, 39(1): 44-49.
[11] Hiroyuki Kono, Sayaka Fujita. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1, 2, 3, 4-butanetetracarboxylic dianhydride[J]. Carbohydrate Polymers, 2012, 87(4): 2582-2588.
[12] 郑虹, 介兴明, 于海军, 等. 新型ɑ-纤维素/聚砜共混超滤膜的制备与性能研究[J]. 膜科学与技术, 2015(6): 1-8.
ZHENG Hong, JIE Xingming, YU Haijun, et al. Preparation and characterization of α-cellulose/ polysulfoneblend UF membrane[J], Membrane Science and Technology, 2015(6): 1-8.
[1] 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119.
[2] 徐晓霞 危惠敏 付少举 张佩华. 单纤维柔软性的新型测试方法与优化[J]. 纺织学报, 2017, 38(11): 27-31.
[3] 赵艳娇 刘慧 杨雪 降帅 徐春霞 牛姿璇 刘丽芳. 水稻秸秆纤维素纳米晶须的制备及其表征[J]. 纺织学报, 2017, 38(01): 1-7.
[4] 杜晓莹 傅佳佳 王鸿博 高卫东 蒋春燕. 超声波处理对纤维素酶法水解竹粉的影响[J]. 纺织学报, 2017, 38(01): 83-87.
[5] 马小路 张莉彦 李好义 谭晶 何万林 杨卫民. 熔体微分静电纺丝取向纳米线的制备[J]. 纺织学报, 2017, 38(01): 8-12.
[6] 刘东奇 王喆 王翔 尹翠玉 张宇峰. 甲醇蛋白改性粘胶纤维的结构与性能[J]. 纺织学报, 2016, 37(09): 12-15.
[7] 王晓婷 程隆棣 刘丽芳. 玉米苞叶及其纤维的基本结构与性能[J]. 纺织学报, 2016, 37(07): 7-12.
[8] 盛卫 董伊航 周宁 张克勤. 沙柳皮基微晶纤维素的制备及其性能表征[J]. 纺织学报, 2016, 37(06): 7-12.
[9] 蒋亚君 邱莹丹 王霁龙 章倩 邱夷平. 应用1-辛烯涂层与常压等离子体处理的苎麻纤维疏水性能改性[J]. 纺织学报, 2015, 36(06): 7-12.
[10] 余莹莹 邢铁玲 盛家镛 陈国强 刘雅光 田驰. 柞蚕彩丝的结构和性能[J]. 纺织学报, 2015, 36(04): 16-19.
[11] 陈慰来 万林焰 易定红. T800弹性纱线微观结构和力学性能的测试与分析[J]. 纺织学报, 2014, 35(3): 18-0.
[12] 鲍利红 赵晗 李青. 聚氨酯预聚体改性氨基硅油柔软剂的制备[J]. 纺织学报, 2014, 35(3): 87-0.
[13] 李春花 徐纪纲 程春祖 王荣民 赵庆章. 纤维素浆粕在NMMO/H2O中的溶胀行为研究[J]. 纺织学报, 2014, 35(2): 116-0.
[14] 王秀华 沈金科 沈国光 李为民 李邵波 周翔 姚玉元. 一步法PET/CDP混纤牵伸丝的制备与性能[J]. 纺织学报, 2013, 34(5): 30-34.
[15] 李长龙 刘琼 孙瑞霞 王宗乾. 青桐韧皮化学脱胶与纤维性能分析[J]. 纺织学报, 2013, 34(12): 8-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!