纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 142-146.doi: 10.13475/j.fzxb.20171005205

• 机械与器材 • 上一篇    下一篇

刺绣机针杆机构运动精度的灵敏度分析

  

  • 收稿日期:2017-10-17 修回日期:2018-10-19 出版日期:2019-01-15 发布日期:2019-01-18

Sensitivity analysis on kinematic accuracy of needle bar mechanism in embroidery machine#br#

  • Received:2017-10-17 Revised:2018-10-19 Online:2019-01-15 Published:2019-01-18

摘要:

为提高刺绣机针杆机构的运动精度及其稳健性,采用Sobol′方法对该机构的运动精度进行全局灵敏度分析,并在此基础上对针杆机构进行优化设计。首先,同时考虑杆长的制造误差和运动副间隙对针杆位移的影响,建立了针杆机构运动精度的数序模型。然后,采用Sobol′方法求出该模型中14 个随机变量的总灵敏度,并根据灵敏度的排序确定出4 个重要因素和1 个关键因素,其中连杆长度是关键因素。通过减少关键因素的制造误差,进一步优化针杆机构的运动精度。结果表明,优化后针杆机构位移误差的均方差明显降低,运动精度的稳健性得到了提高。

关键词: 刺绣机, 针杆机构, 运动精度, 灵敏度, 数序模型

Abstract:

In order to improve the kinematic precision and its robustness of the needle bar mechanism in the embroidery machine, the global sensitivity analysis on the kinematic accuracy of this mechanism was carried out by using the Sobol′ method. On the basis of global sensitivity analysis, the optimum design of the needle bar mechanism was carried out. Firstly, considering the effect of rod manufacturing error and kinematic pair clearance on the needle bar displacement, a numerical model for kinematic accuracy analysis of needle bar mechanism was established. Then, the total sensitivity of 14 random variables was obtained by using the Sobol′ global sensitivity analysis method, and 4 important factors and 1 key factor were determined according to the order of sensitivity, in which the length of the connecting rod is the key factor. By reducing the manufacturing error of the key factor, the kinematic accuracy of the needle bar mechanism was further optimized. The results show that the standard deviation of the displacement error of the needle bar mechanism is reduced obviously, and the robustness of the motion accuracy is improved.

Key words: embroidery machine, needle bar mechanism, kinematic accuracy, sensitivity, numerical model

[1] Saltelli A, Tarantola S. Campolongo F, Ratto M. Sensitivity analysis in practice: A guide to assessing scientific models[M]. John Wiley & Sons, Ltd. 2004.
[2] 邢家骅. GY4-1型电脑多头绣花机的传统系统和刺料机构介绍[J]. 缝纫机科技,1994,180(5):40-42.
Xing Jiahua. Introduce to the tread taking-up and needle driving mechanism in GY4-1 computerized embroidery machine[J]. Sewing machine technology, 1994,180(5):40-42.
[3] Sobol’ I M. Sensitivity estimates for nonlinear mathematical models[J], Matem. Modelirovanie 1990, 2 (1): 112–118 (in Russian), MMCE, 1993, 1(4): 407–414 (in English).
[4] Sobol’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J], Mathematics and Computers in Simulation, 2001,55: 271–280.
[5] Saltelli A, Sobol’ I. M. About the use of rank transformation in sensitivity analysis of model output. Reliability Engineering and System Safety, 1995, 50: 225–239.
[6] Saltelli A, Annoni P, Azzini I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J], Computer Physics Communications, 2010, 181: 259–270.
[7] 邢家骅.GY4-1电脑多头绣花机刺布机构和挑线机构的运动分析和计算[J].机械设计与研究,1990(2):13-17.
Xing Jiahua. Kinematic analysis and calculation of tread taking-up and needle driving mechanism in GY4-1 computerized embroidery machine[J]. Machine Design and Research, 1990(2):13-17.
[8] 林建龙,罗智文,张力. 电脑刺绣机针杆机构位置精度分析[J].纺织学报,2010, 31 (7): 131-134.
Lin Jianlong, Luo Zhiwen, Zhang Li. Position accuracy analysis on needle bar mechanism of computerized embroidery machine[J]. Journal of Textile Research, 2010, 31(7): 131-134.
[9] 郭惠昕. 刺绣机含间隙针杆机构的运动稳健性分析与优化设计[J]. 纺织学报, 2011, 32(11): 131-136.
Guo Huixin. Robust Design Optimization of the Needle Bar Mechanism with joint clearance in Automatic Embroidery Machine[J]. Journal of Textile Research, 2011, 32(11): 131-136.
[10] 谭晓兰,韩建友,陈立周. 考虑运动副间隙影响的函数发生机构的稳健优化设计[J].北京科技大学学报,2004, 26(4): 416-419.
Tan Xiaolan, Han jianyou, Chen Lizhou. Robust design of function generating mechanisms considering kinematic pair clearance[J]. Journal of university of science and technology beijing, 2004,26(4):416-419.
[11] Helton J C, Davis F. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems [R]. SANDIA REPORT, SAND2001-0417, Unlimited Release, Printed November 2002.
[12] Bratley P. And Fox B. L. Algorithm 659: Implementing Sobol’s quasirandom sequence generator [J], ACM Trans. Math. Softw. 1988, 14, 88–100.
[1] 石春乐 陈炜 杨以雄 . 快时尚品牌产品开发流程对时间绩效的影响[J]. 纺织学报, 2016, 37(10): 113-119.
[2] 刘玲玲 丁辛 杨旭东. 一种柔性触控装置的研制[J]. 纺织学报, 2011, 32(9): 59-63.
[3] 刘良宝;王新;赵罘;肖科峰. 电脑刺绣机刺布机构结构优化设计[J]. 纺织学报, 2011, 32(5): 126-129.
[4] 林建龙;罗智文;张力. 电脑刺绣机针杆机构位置精度分析[J]. 纺织学报, 2010, 31(7): 131-134.
[5] 孙华平;卢达. 灵敏度可调的电脑横机震动保护设计[J]. 纺织学报, 2009, 30(9): 119-122.
[6] 罗智文;林建龙;唐永龙. 电脑刺绣机针杆机构力矩分析[J]. 纺织学报, 2009, 30(12): 113-116.
[7] 林建龙;王小北;张力. 新型电脑刺绣机挑线机构圆柱螺旋弹簧设计[J]. 纺织学报, 2009, 30(02): 121-121124.
[8] 林建龙;傅程;门桂香. 电脑刺绣机横梁弯曲振动分析[J]. 纺织学报, 2007, 28(7): 109-111.
[9] 林建龙;王小北;赵丽萍. 电脑刺绣机的横梁减振实验探讨[J]. 纺织学报, 2007, 28(12): 121-123.
[10] 林建龙;王小北;顾翔. 新型电脑刺绣机挑线机构设计分析[J]. 纺织学报, 2006, 27(12): 105-108.
[11] 赵罘;林建龙;辛洪兵;王小北;门桂香. 小波包分析在电脑刺绣机振动测试中的应用[J]. 纺织学报, 2005, 26(2): 72-73.
[12] 蒋培清;严灏景. 空气层对织物动态热湿传递性能的影响[J]. 纺织学报, 2005, 26(1): 10-12.
[13] 林建龙;孟春玲;傅程;门桂香. 电脑刺绣机针杆机构质心轨迹研究[J]. 纺织学报, 2005, 26(1): 70-72.
[14] 赵罘;林建龙;辛洪兵;门桂香. 应用小波理论对电脑刺绣机振动信号降噪处理[J]. 纺织学报, 2004, 25(03): 55-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜亚明;谢霞.;邱冠雄;王鹏. 多向纤维缠绕预制件的纤维取向[J]. 纺织学报, 2006, 27(6): 36 -40 .
[2] 冯毅力;李汝勤. 用小波变换法自动测量机织物经纬密度[J]. 纺织学报, 2001, 22(02): 30 -31 .
[3] 盛季陶. 生化法对聚乙烯醇退浆废水的处理研究[J]. 纺织学报, 2002, 23(02): 69 .
[4] 孙健怡. SOMET SM93剑杆织机电控系统分析[J]. 纺织学报, 1995, 16(02): 33 -37 .
[5] 成春生. 再论纱疵检测过程的准确性[J]. 纺织学报, 1989, 10(10): 8 -11 .
[6] 周裔彬;刘正初;彭源德;冯湘沅;段盛文;郑科. 罗布麻脱胶时有机物总量变化规律的研究[J]. 纺织学报, 2003, 24(04): 21 -22 .
[7] 丁志荣;辛三法;李志红;王善元. 超吸水纤维的主要性能[J]. 纺织学报, 2009, 30(06): 15 -18 .
[8] 伏广伟;王瑞;倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(06): 34 -38 .
[9] 徐进云;郑帼;葛启;周存;魏俊富. 十八烷基甜菜碱的合成与应用性能[J]. 纺织学报, 2005, 26(1): 22 -24 .
[10] 赵良臣. 绉组织纹版设计理论探讨[J]. 纺织学报, 1987, 8(12): 45 -49 .