纺织学报 ›› 2018, Vol. 39 ›› Issue (12): 95-100.doi: 10.13475/j.fzxb.20180201006

• 染整与化学品 • 上一篇    下一篇

聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟

    

  1.  
  • 收稿日期:2018-02-05 修回日期:2018-08-08 出版日期:2018-12-15 发布日期:2018-12-17
  • 基金资助:

     

Conductivity of polyaniline / chitosan / wool composite fabrics and molecular simulation for aniline adsorption

    

  • Received:2018-02-05 Revised:2018-08-08 Online:2018-12-15 Published:2018-12-17

摘要:

为提高聚苯胺/ 羊毛复合织物的导电性能,采用原位聚合法利用醋酸和盐酸共掺杂一步合成聚苯胺/ 壳聚糖(PANI/ CTS) / 羊毛复合导电织物。借助场发射扫描电镜、X 射线光电子能谱仪和四探针测试仪对复合织物的结构和导电性能进行分析,研究了CTS 用量对复合织物导电性能的影响。采用分子模拟方法模拟苯胺吸附的微观运动,进一步研究了CTS 增强PANI/ 羊毛复合织物导电性能的微观机制。结果表明:当CTS 用量为2. 05% (o. w. f)时,PANI/ CTS/ 羊毛复合导电织物的电导率达到11. 32 S/ cm;羊毛角蛋白分子表面非均匀电场分布导致苯胺非均匀吸附,而CTS 氨基质子化有助于弱电场区域的苯胺吸附,使得苯胺整体吸附量更多,均匀度更好,聚合形成更加均匀、致密的PANI 层,提高了复合织物的导电性能。

关键词: 聚苯胺/ 壳聚糖/ 羊毛复合织物, 原位聚合法, 导电性, 苯胺吸附分子模拟

Abstract:

In order to improve the conductivity of polyaniline/ wool composite conductive fabric, polyaniline (PANI) was deposited on the surface of wool fabric in one step by in-situ polymerization using carboxylic acid and hydrochloric acid as doping acid. The influence of CTS dosage on the structure and electrical conductivity of composite fabrics was investigated by field emission scanning electron microscopy, X-ray photoelectron spectroscopy and four probes. The micro motion process of aniline adsorption was simulated by molecular simulation, and the micro mechanism of CTS enhancing the conductivity of PANI/ wool composite fabric was further studied. The results indicate that the conductivity
of PANI/ CTS/ wool composite conductive fabric reaches 11. 32 S/ cm with addition of 2. 05% (o. w. f) of CTS. Non-uniform electric field distribution on the surface of keratin molecules leads to non-uniform adsorption of aniline, while the amino protonation of CTS contributes to aniline adsorption in the weak current field, leading to more overall adsorption of aniline, better uniformity, and more uniform and dense PANI layer by polymerization, which improves the conductivity of the composite fabrics.

Key words: polyaniline/ chitosan/ wool composite fabric, in-situ polymerization, conductivity, aniline adsorption molecular simulation

中图分类号: 

  •  
[1] 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88.
[2] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[3] 郝鸿飞 刘晓艳. 胆固醇液晶热致变色微胶囊的制备及其性能[J]. 纺织学报, 2017, 38(06): 75-79.
[4] 王云燕 陈慰来 王金凤. 碳黑导电纤维的导电性能[J]. 纺织学报, 2017, 38(05): 19-24.
[5] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[6] 蔡倩文 王金凤 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016, 37(06): 48-53.
[7] 范菲 王潮霞. 基于聚氨酯壁材的单/双壳微胶囊光致变色性能及机制[J]. 纺织学报, 2015, 36(02): 81-85.
[8] 鞠佳彤 田琳 陈莹 唐劲天. 聚吡咯涤纶导电织物的制备及其表征[J]. 纺织学报, 2013, 34(11): 28-0.
[9] 孟灵灵, 魏取福, 黄新民. 氩气压强对涤纶织物表面溅射银膜特性的影响[J]. 纺织学报, 2012, 33(4): 29-33.
[10] 狄剑锋;唐俊云. 聚苯胺/锦纶/氨纶复合导电织物的制备工艺[J]. 纺织学报, 2011, 32(4): 43-47.
[11] 金欣;肖长发;俞传坤;谢淳. 涂覆型PANI/PA6纤维导电性能[J]. 纺织学报, 2010, 31(10): 1-5.
[12] 刘杰;杨斌. 基于溶胶-凝胶法的ITO透光导电膜制备[J]. 纺织学报, 2009, 30(07): 1-5.
[13] 伏广伟;王瑞;倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(06): 34-38.
[14] 王鸿博;高卫东;何艳丽;李静;顾璐英. 磁控溅射PET非织造基银膜的微结构及性能[J]. 纺织学报, 2009, 30(02): 29-33.
[15] 吴赞敏;吕小卓;冯文昭. 热敏变色整理剂的研制[J]. 纺织学报, 2009, 30(01): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭兴峰;黄故;马崇启;林国才. 机织物结构及其极限密度的研究[J]. 纺织学报, 1998, 19(05): 21 -23 .
[2] 孙锋. 羊毛和丙纶复合针织面料热湿舒适性研究[J]. 纺织学报, 2002, 23(06): 34 -36 .
[3] 任朝阳. 细纱胶辊用钴60辐照处理法[J]. 纺织学报, 1983, 4(12): 31 .
[4] 周衡书. 竹纤维纺纱与织造性能研究[J]. 纺织学报, 2004, 25(05): 91 -93 .
[5] 张顺花;黄志超;程贞娟;凌荣根;孙福. 改性聚丙烯纤维的超分子结构与力学性能研究[J]. 纺织学报, 2004, 25(03): 23 -25 .
[6] 徐发泰. 四川举办《化纤性能与检验》训练班[J]. 纺织学报, 1983, 4(09): 45 .
[7] 张东音. 摇纱机集成电路满绞停车装置的改进[J]. 纺织学报, 1984, 5(07): 41 .
[8] 陈文兴;应必廉;余志成;付雅琴;凌荣国;沈之荃;白井汪芳. 具有消臭和抗菌功能的蚕丝纤维及其制品研究[J]. 纺织学报, 1998, 19(06): 4 -7 .
[9] 王建刚.;王亚丽;葛明桥;甘应进.;陈东生.. 柠檬酸和壳聚糖对棉织物抗菌整理的研究[J]. 纺织学报, 2006, 27(1): 89 -92 .
[10] 李江永;何明籍;韩庆平. 合成纤维染色与WLF方程[J]. 纺织学报, 1987, 8(11): 55 -59 .