纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 45-49.doi: 10.13475/j.fzxb.20190203206

• 纺织工程 • 上一篇    下一篇

纱条中纤维排列状态与纱条不匀的关系

苏玉恒1, 孔繁荣1, 严广松1,2   

  1. 1. 河南工程学院, 河南郑州 450007; 2. 郑州升达经贸管理学院, 河南郑州 451191
  • 收稿日期:2019-02-19 修回日期:2019-08-12 出版日期:2020-01-15 发布日期:2020-01-14

Relationship between fiber alignment and yarn unevenness

SU Yuheng1, KONG Fanrong1, YAN Guangsong1,2   

  1. 1. Henan University of Engineering, Zhengzhou, Henan 450007, China;
    2. Zhengzhou Shengda University of Economics, Business and Management, Zhengzhou, Henan 451191, China
  • Received:2019-02-19 Revised:2019-08-12 Online:2020-01-15 Published:2020-01-14

摘要:

为研究短纤维纱条中纤维的排列状态与纱条截面纤维根数分布不匀的关系,采用几何概率方法建立了等分区间内纤维左头端数分布与纱条截面纤维根数的期望之间的数学模型,并定义了表征纱条中纤维排列状态的参数。运用蒙特卡罗方法模拟了纱条截面根数不匀随排列参数变化的关系曲线。结果表明:短纤维纱条截面纤维根数的CV 值与纱条中短纤维排列参数呈负线性关系,与纤维长度分布和模拟区间大小的划分无关;且当排列参数接近1 时,即纤维左头端数在所划分区间中为固定值时,纱条截面纤维根数不匀最低,而当排列参数趋向于0 时,即纤维左头端数在所划分区间中呈泊松分布时则不匀最大。

关键词: 纤维头端, 纤维排列, 随机模拟, 纱条不匀, 纱条截面纤维根数

Abstract:

In order to study the relationship between the alignment of fibers and the uneven distribution of fiber numbers in the cross-sections of a staple yarn, a mathematical model describing the distribution of fibers at the left ends of yarn segments cut at equal intervals and the expectation of the fiber numbers in the yarn cross-section was established using geometric probability method, and a parameter to characterize the arrangement of fibers in yarn was defined. The variation of fiber numbers in the cross-sections of yarn segments against the fiber alignment parameter was simulated by Monte Carlo method. The results showed that the CV value of fiber numbers in the cross-sections of the segments of the staple yarn was negatively
proportional against the parameters of the alighment state of staple fibers in the yarn, and demonstrated no relation with the distribution of the fiber length and the division of the simulation interval. When the alighment parameter is close to 1, that is when the number of fibers in the left end of the yarn segment is fixed, the variation in fiber numbers in the cross-sections was the lowest. When the alignment parameter tends to 0, meaning that when the number of fibers in yarn segments follows a Poisson distribution, the variation of the fiber numbers was the highest.

Key words: fiber end, fiber alignment, random simulation, yarn unevenness, fiber number in the crosssection of staple yarn

中图分类号: 

[1] 张弘强 胡远波 姜展 匡雪琴 郁崇文. 生条中纤维左头端的分布[J]. 纺织学报, 2016, 37(05): 28-31.
[2] 严广松;朱进忠;郁崇文. 基于纤维排列参数的纱线不匀预测[J]. 纺织学报, 2008, 29(12): 25-29.
[3] 姚杰;叶国铭;侯湘洪. 基于相空间重构的纱条不匀预测[J]. 纺织学报, 2005, 26(4): 57-58.
[4] 姚杰;叶国铭. 纱条不匀的混沌特性[J]. 纺织学报, 2005, 26(1): 47-48.
[5] 甘应进;张永宁;王建刚;陈东生. 纱条不匀灰色预测模型的建立[J]. 纺织学报, 2001, 22(01): 10-12.
[6] 甘应进;张永宁;王大光;陈东生. 纱条不匀预测模型的优化[J]. 纺织学报, 2000, 21(03): 50-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[2] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[3] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[4] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .
[5] 牛增元;房丽萍.;杨桂朋;薛秋红;王境堂;孙忠松. 纺织品中邻苯二甲酸酯类环境激素在人工汗液中的迁移[J]. 纺织学报, 2006, 27(2): 74 -77 .
[6] 杨弘;于延有;王新征;钟冠雄;谭灿荣. 对含糖原棉加热处理的试验探讨[J]. 纺织学报, 1992, 13(07): 24 -26 .
[7] 戴瑾瑾;朱泉;张洵栓;何瑾馨;张宝珍;陆志勋;蔡幼明;吴健雄. CHP-91袜用防蚊整理剂及其应用[J]. 纺织学报, 1992, 13(07): 31 -32 .
[8] 郭秉臣;董振礼;高殿斌. 兔毛织物的掉毛探讨[J]. 纺织学报, 1992, 13(07): 33 -34 .
[9] 赵荣金. 高速空调喷淋室的介绍[J]. 纺织学报, 1984, 5(07): 46 -49 .
[10] 杨文轩. 预分离器的设计与探讨[J]. 纺织学报, 1984, 5(07): 50 -55 .