纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 176-183.doi: 10.13475/j.fzxb.20190301208

• 综合述评 • 上一篇    下一篇

纤维基表面增强拉曼基底的研究进展

刘爱荣1, 陈艳敏1, 葛凤燕1(), 蔡再生1, 王娟2   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.石家庄市化学纤维技术创新中心, 河北 石家庄 050000
  • 收稿日期:2019-03-04 修回日期:2020-02-08 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 葛凤燕
  • 作者简介:刘爱荣(1996—),女,硕士生。主要研究方向为织物基表面增强拉曼基底。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309400)

Progress on fiber-based surface-enhanced Raman scattering substrates

LIU Airong1, CHEN Yanmin1, GE Fengyan1(), CAI Zaisheng1, WANG Juan2   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Innovation Center of Shijiazhuang for Chemical Fiber Technology, Shijiazhuang, Hebei 050000, China
  • Received:2019-03-04 Revised:2020-02-08 Online:2020-05-15 Published:2020-06-02
  • Contact: GE Fengyan

摘要:

为解决传统纤维表面拉曼增强(SERS)基底所存在的稳定性差、操作不便等问题。介绍了柔性SERS基底的优势,总结了目前各类纤维基SERS基底的研究进展及其在痕量检测领域的应用,简述了电磁增强和化学增强2种表面增强拉曼现象的基本原理。综述了纤维纸基SERS、织物基SERS、散纤维及纳米纤维膜SERS基底的制备方法及其应用,并着重介绍了织物基SERS材料的研究现状及其在在线检测应用方面的挑战与机遇。基于织物基SERS材料高度灵敏及灵活检测的特点,展望了其作为可穿戴传感器件用于即时检测和周身环境监测的前景,为拓展智能纺织品的应用领域开辟了新的思路。

关键词: 表面增强拉曼光谱, 柔性基底, 电磁增强, 化学增强, 在线监测, 可穿戴传感器

Abstract:

In view of the poor stability and inconvenient detection process of traditional urface-enhanced Raman scattering (SERS) substrates, the current research and application progress in fiber-based SERS substrates in the field of trace detection were reviewed in this and the advantages of flexible SERS substrates were summarized. The mechanisms of SERS were firstly introduced briefly, including electromagnetic enhancement and chemical enhancement. Secondly, the fabrication methods and practical application of fiber-based SERS, fabric-based SERS, and nanofibrous membranes SERS substrates were reviewed. Emphasis was placed on the research status of fabric-based SERS substrates and their challenges and opportunities in future detection applications. Based on the highly sensitive and flexible detection of fabric-based SERS materials, the potential application as a wearable sensor for instant detection and environmental monitoring was discussed, which leads to new ideas of creation of smart textiles.

Key words: surface-enhanced Raman spectrum, flexible substrate, electromagnetic enhancement, chemical enhancement, online detection, wearable sensor

中图分类号: 

  • O657

图1

原位法SERS-棉织物的制备及拉曼检测流程图"

图2

可循环使用SERS-棉织物的可循环使用性测试流程图"

图3

SERS活性纤维纳米粒子的制备原理及其探针分子检测中的应用"

图4

PmPD/PAN纳米纤维的合成和AgNCs的自组装过程及其检测4-MBA机制示意图"

[1] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928,121(3048):501-502.
[2] HAKONEN A, ANDERSSON P O, SCHMIDT M S, et al. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review[J]. Analytica Chimica Acta, 2015,893:1-13.
[3] CHEN J L, YANG P C, WU T, et al. Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV-Vis and surface enhanced Raman scattering approaches[J]. Spectrochimica Acta: Part A: Molecular and Biomolecular Spectroscopy, 2018,199:301-307.
[4] PANG S, YANG T, HE L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. Trac Trends in Analytical Chemistry, 2016,85:73-82.
[5] ZHENG J, HE L. Surface-enhanced raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science & Food Safety, 2014,13(3):317-328.
doi: 10.1111/1541-4337.12062 pmid: 33412656
[6] 李莉莉, 赵丽娇, 钟儒刚. 拉曼光谱检测生物大分子损伤的研究进展[J]. 光谱学与光谱分析, 2012,32(9):2422-2426.
LI Lili, ZHAO Lijiao, ZHONG Rugang. Progress in the detection of biological macromolecular damage by Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012,32(9):2422-2426.
[7] LIU J, JI L, CHEN L, et al. Identification of yellow dyes in two wall coverings from the palace museum: evidence for reconstitution of artifacts[J]. Dyes and Pigments, 2018,153:137-143.
[8] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver elec-trode[J]. Chemical Physics Letters, 1974,26(2):163-166.
[9] JEANMAIRE D L, DUYNE R P V. Surface raman spectroelectrochemistry: part I: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1977,84(1):1-20.
[10] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997,275(5303):1102-1106.
pmid: 9027306
[11] KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997,78(9):1667.
[12] BAIBARAC M, COCHET M, ŁAPKOWSKI M, et al. SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu polymer film thickness and roughness parameter dependence of SERS spectra[J]. Synthetic Metals, 1998,96(1):63-70.
[13] SCHATZ G C, YOUNG M A, DUYNE R P V. Electromagnetic mechanism of SERS[M]. Berlin: Springer, 2006: 19-23.
[14] 周钦. 纳米银表面增强拉曼基底制备及其多氯联苯痕量检测应用[D]. 北京:清华大学, 2011: 14-18.
ZHOU Qin. Fabrication nano-structured silver surface-enhanced raman substrates and polychlorinated biphenyls detection[D]. Beijing: Tsinghua University, 2011: 14-18.
[15] WILLETS K A, VAN DUYNE R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007,58(1):267-297.
[16] 徐大鹏, 董菁, 杨巍. 纳米表面增强拉曼散射基底的研究进展[J]. 西安工业大学学报, 2015,35(12):947-954.
XU Dapeng, DONG Jing, YANG Wei. Research progress of Nano surface enhanced Raman scattering substrates[J]. Journal of Xi'an Technological University, 2015,35(12):947-954.
[17] CAMPION A, III J E I, CHILD C M, et al. On the mechanism of chemical enhancement in surface-enhanced Raman scattering[J]. Jamchemsoc, 1995,117(47):11807-11808.
[18] CHONG N S, DONTHULA K, DAVIES R A, et al. Significance of chemical enhancement effects in surface-enhanced Raman scattering (SERS) signals of aniline and aminobiphenyl isomers[J]. Vibrational Spectroscopy, 2015,81:22-31.
[19] 刘莎莎. 表面增强拉曼光谱化学增强的理论研究[D]. 大连:大连理工大学, 2009: 5-9.
LIU Shasha. Theoretical study on contribution of chemical enhancement to surface-enhanced Raman scattering spectra[D]. Dalian: Dalian University of Technology, 2009: 5-9.
[20] 孙磊, 白福全, 张红星. 理论研究Ag/MPH/TiO2体系的SERS光谱化学增强机理[J]. 物理化学学报, 2011,27(6):1335-1340.
SUN Lei, BAI Fuquan, ZHANG Hongxing. Theoretical investigation of chemically enhanced mechanism of SERS spectroscopy for Ag/MPH/TiO2 system[J]. Acta Physico-Chimica Sinica, 2011,27(6):1335-1340.
doi: 10.3866/PKU.WHXB20110602
[21] CHASE B, PARKINSON B. A study of the wavelength and potential dependence of surface enhanced Raman scattering on copper, silver, and gold electrodes[J]. Journal of Physical Chemistry, 1991,95(20):7810-7813.
[22] BILLMAN J, OTTO A. Charge transfer between adsorbed cyanide and silver probed by SERS[J]. Surface Science, 1984,138(1):1-25.
[23] VODINH T, HIROMOTO M Y K, BEGUN G M, et al. Surface-enhanced Raman spectrometry for trace organic analysis[J]. Analytical Chemistry, 1984,56(9):1667-1670.
[24] ZHANG R, XU B B, LIU X Q, et al. Highly efficient SERS test strips[J]. Chemical Communications, 2012,48(47):5913.
doi: 10.1039/c2cc31604h pmid: 22572925
[25] HOPPMANN E P, WEI W Y, WHITE I M. Highly sensitive and flexible inkjet printed SERS sensors on paper[J]. Methods, 2013,63(3):219-224.
doi: 10.1016/j.ymeth.2013.07.010 pmid: 23872057
[26] TSENG S C, YU C C, WAN D, et al. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection[J]. Analytical Chemistry, 2012,84(11):5140-5145.
doi: 10.1021/ac300397h
[27] ROSS M B, ASHLEY M J, SCHMUCKER A L, et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper[J]. Journal of Physical Chemistry C, 2016,120(37):20789-20797.
[28] WANG C, LIU B, DOU X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges[J]. Sensors & Actuators B Chemical, 2016,231(8):357-364.
[29] 杨玥, 翁国军, 赵婧, 等. 纸质表面增强拉曼散射基底的制备及其应用进展[J]. 中国激光, 2018,45(3):1-11.
YANG Yue, WENG Guojun, ZHAO Jing, et al. Progresses of preparation and application of paper-based surface-enhanced Raman scattering substrate[J]. Chinese Journal of Lasers, 2018,45(3):1-11.
[30] TANG B, ZHANG M W, HOU X L, et al. Coloration of cotton fibers with anisotropic silver nanoparticles[J]. Industrial & Engineering Chemistry Research, 2012,51(39):12807-12813.
[31] TANG B, WANG J, XU S, et al. Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric[J]. Journal of Colloid and Interface Science, 2011,356(2):513-518.
doi: 10.1016/j.jcis.2011.01.054 pmid: 21316697
[32] KELLY F M, JOHNSTON J H. Colored and functional silver nanoparticle-wool fiber composites[J]. Acs Appl Mater Interfaces, 2011,3(4):1083-1092.
doi: 10.1021/am101224v pmid: 21381777
[33] TANG B, SUN L, KAUR J, et al. In-situ synjournal of gold nanoparticles for multifunctionalization of silk fabrics[J]. Dyes & Pigments, 2014,103(6):183-190.
[34] ROBINSON A M, LILI Z, ALAM M Y, et al. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications[J]. Analyst, 2015,140(3):779-785.
pmid: 25460852
[35] LIU J, ZHOU J, TANG B, et al. Surface enhanced Raman scattering (SERS) fabrics for trace analysis[J]. Applied Surface Science, 2016,386:296-302.
doi: 10.1016/j.apsusc.2016.05.150
[36] CHEN Y, GE F, GUANG S, et al. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis[J]. Applied Surface Science, 2018,436:111-116.
[37] CHENG D, HE M, RAN J, et al. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection[J]. Sensors & Actuators B Chemical, 2018,270:508-517.
[38] ZHAO W, XU Z, SUN T, et al. Carbon cloth surface-decorated with silver nanoparticles for surface-enhanced Raman scattering[J]. Journal of Alloys & Compounds, 2014,584(3):635-639.
[39] DUY P K, YEN P T H, CHUN S, et al. arbon fiber cloth-supported Au nanodendrites as a rugged surface-enhanced Raman scattering substrate and electrochemical sensing platform[J]. Sensors & Actuators B Chemical, 2016,225:377-383.
[40] CAI L, DENG Z, DONG J, et al. Fabrication of non-woven fabric-based SERS substrate for direct detection of pesticide residues in fruits[J]. Journal of Analysis & Testing, 2017,1:322-329.
[41] GE F, CHEN Y, LIU A, et al. Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric[J]. Cellulose, 2019,26(24):2689-2697.
doi: 10.1007/s10570-018-2209-1
[42] BALLERINI D R, YING H N, GARNIER G, et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold[J]. Aiche Journal, 2014,60(5):1598-1605.
doi: 10.1002/aic.v60.5
[43] GONG Z, DU H, CHENG F, et al. Fabrication of SERS swab for direct detection of trace explosives in fingerprints[J]. Acs Appl Mater Interfaces, 2014,6(24):21931-21937.
doi: 10.1021/am507424v pmid: 25455731
[44] QU L L, GENG Y Y, BAO Z N, et al. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl[J]. Microchimica Acta, 2016,183(4):1307-1313.
[45] KONG X M, REZA M, MA Y B, et al. Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications[J]. Cellulose, 2015,22(6):3645-3655.
[46] PRIKHOZHDENKO E S, BRATASHOV D N, GORIN D A, et al. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes[J]. Nano Research, 2018,11(9):1-21.
[47] BAI L, JIA L, YAN Z, et al. Plasma-assisted fabrication of nanoparticle-decorated electrospun nanofibers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,82:360-366.
[48] JIA P, CAO B, WANG J, et al. Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate[J]. Analyst, 2015,140(16):5707.
doi: 10.1039/c5an00716j pmid: 26153569
[1] 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28.
[2] 陈磊, 裴克梅, 康晓静, 李文瑛, 赵丰, 刘剑. 表面增强拉曼光谱对纺织品文物中茜素和茜紫素的快速检测[J]. 纺织学报, 2019, 40(03): 76-82.
[3] 向忠 汝晶炜 吴学进 胡旭东. 电阻式织物回潮率测量装置的设计与应用[J]. 纺织学报, 2014, 35(6): 130-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!