纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 64-71.doi: 10.13475/j.fzxb.20190700708

• 染整与化学品 • 上一篇    下一篇

光交联丝素蛋白水凝胶的蓝光引发体系

孙广东1, 黄益1(), 邵建中1, FAN Qinguo2   

  1. 1.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
    2.麻省大学达特茅斯分校 生物工程系, 马萨诸塞州 北达特茅斯 02747
  • 收稿日期:2019-07-01 修回日期:2019-11-26 出版日期:2020-04-15 发布日期:2020-04-27
  • 通讯作者: 黄益
  • 作者简介:孙广东(1991—),男,博士生。主要研究方向为丝素蛋白水凝胶。
  • 基金资助:
    国家自然科学基金项目(51273180);浙江省基础公益研究计划项目(LGG18E030008);浙江理工大学基本科研业务费专项资金资助项目(2019Q023)

Blue light initiated photocrosslinking of silk fibroin hydrogel

SUN Guangdong1, HUANG Yi1(), SHAO Jianzhong1, FAN Qinguo2   

  1. 1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Department of Bioengineering,University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA
  • Received:2019-07-01 Revised:2019-11-26 Online:2020-04-15 Published:2020-04-27
  • Contact: HUANG Yi

摘要:

针对再生丝素蛋白水凝胶生物活性、凝胶效率及凝胶强度三者难以兼具的问题,用樟脑醌(CQ)、核黄素磷酸钠(FMN)、曙红Y(EY)及姜黄素4种生物相容的光敏剂,分别与二芳基六氟磷酸碘鎓盐(DPI)构成丝素蛋白水凝胶的高效蓝光交联引发体系。借助紫外分光光度计和光差示扫描量热法研究了4种光引发体系的光谱吸收特性和蓝光引发效率,采用光流变系统研究了光交联丝素蛋白的凝胶化行为。结果表明:CQ/DPI、EY/DPI体系均可作为自由基聚合以及丝素蛋白光交联反应的良好蓝光引发体系,该蓝光引发体系诱导丝素蛋白酪氨酸残基自由基间的偶合反应是丝素蛋白光交联反应的主要机制;以EY/DPI体系引发低浓度丝素蛋白光交联反应可在短时间(10 min)内实现较高强度丝素蛋白水凝胶的制备。

关键词: 丝素蛋白水凝胶, 光交联反应机制, 光引发剂, 光敏增效剂, 二酪氨酸

Abstract:

A rapid fabrication method for high-strength silk fibroin hydrogel using blue light photocrosslinking was developed. To achieve this, different photoinitiators (camphorquinone, riboflavin sodium phosphate, curcumin and Eosin Y) together with diphenyl iodonium hexafluorophosphate (DPI) were composed to five efficient blue light photoinitiation systems for the photo-crosslinking of silk fibroin. The spectral absorption characteristics and the photopolymerization efficiency of five photoinitiators were investigated by UV-vis spectrophotometer and photo-DSC. The crosslinking performance of silk fibroin hydrogel was investigated by photo-rheology. The UV-vis spectrum indicates five photoinitiators can be served as blue light photoinitiators and photocrosslinking of silk fibroin can be attributed to the dityrosine by coupling of tyrosine residues. Camphorquinone and Eosin Y show a higher photopolymerization efficiency than other photoinitiators. With such photoinitiation systems, silk fibroin hydrogel is prepared within 10 min in this research.

Key words: silk fibroin hydrogel, photocrosslinking mechanism, photoinitiator, photosensitive synergist, dityrosine

中图分类号: 

  • O636.9

图1

4种蓝光引发剂的光谱特性"

图2

蓝光引发剂的光敏特性"

图3

不同光引发体系引发AM聚合的蓝光聚合效率"

图4

CQ/DPI双组分光引发体系的引发机制"

图5

曙红Y光交联丝素蛋白体系的紫外-可见光谱曲线"

图6

丝素蛋白光交联反应及交联机制"

图7

不同光引发体系下光交联丝素蛋白水凝胶的弹性模量、凝胶时间及损耗因子测试结果"

图8

光交联丝素蛋白水凝胶的制备过程 注:(a)、(b)、(c)样品中含有的光引发剂从右向左依次为无引发剂、樟脑醌、核黄素磷酸钠、姜黄素、曙红Y。"

[1] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76.
[2] KUNDU S. Silk biomaterials for tissue engineering and regenerative medicine[M]. Cambridge: Woodhead Publishing, 2014: 2-15.
[3] SUZUKI S, CHIRILA T V, EDWARDS G A. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomate-rials[J]. Progress in Biomaterials, 2016,5(3/4):193-198.
[4] 陈芳芳, 闵思佳, 田莉. 交联丝素凝胶制备条件的分析[J]. 纺织学报, 2006,27(10):1-5.
CHEN Fangfang, MIN Sijia, TIAN Li. Analysis of preparing conditions of cross-linked fibroin gel[J]. Journal of Textile Research, 2006,27(10):1-5.
[5] CHEN D, YIN Z, WU F, et al. Orientational behaviors of silk fibroin hydrogels[J]. Journal of Applied Polymer Science, 2017.DOI: 10.1002/app.45050.
[6] KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016,31:17-32.
[7] BAI S, ZHANG X, LU Q, et al. Reversible hydrogel-solution system of silk with high beta-sheet content[J]. Biomacromolecules, 2014,15(8):3044-3051.
doi: 10.1021/bm500662z pmid: 25056606
[8] MALLEPALLY R R, MARIN M A, MCHUGH M A. CO2-assisted synjournal of silk fibroin hydrogels and aerogels[J]. Acta Biomaterialia, 2014,10(10):4419-4424.
[9] KUNDU J, POOLE-WARREN L A, MARTENS P, et al. Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs[J]. Acta Biomaterialia, 2012,8(5):1720-1729.
[10] WANG X, KLUGE J, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsula-tion[J]. Biomaterials, 2008,29(8):1054-1064.
[11] KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004,5(3):786-792.
pmid: 15132662
[12] ELLIOTT W H, BONANI W, MANIGLIO D, et al. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking[J]. ACS Applied Materials & Interfaces, 2015,22(7):12099-12108.
[13] TADDEI P, CHIONO V, ANGHILERI A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications[J]. Macromolecular Bioscience, 2013,13(11):1492-1510.
[14] BURDICK J, HOLLAND C, KAPLAN D, et al. ACS biomaterials science and engineering, editorial: first anniversary[J]. ACS Biomaterials Science & Engineering, 2016,2(2):141.
doi: 10.1021/acsbiomaterials.5b00560 pmid: 33418628
[15] KURLAND N E, DEY T, WANG C, et al. Silk protein lithography as a route to fabricate sericin microarchitectures[J]. Advanced Materials, 2014,26(26):4431-4437.
[16] RYU S, KIM H H, PARK Y H, et al. Dual mode gelation behavior of silk fibroin microgel embedded poly (ethylene glycol) hydrogels[J]. Journal of Materials Chemistry B, 2016(4):4574-4584.
[17] WOLLENSAK G, SPOERL E, SEILER T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking[J]. Journal of Cataract & Refractive Surgery, 2003,29(9):1780-1785.
doi: 10.1016/s0886-3350(03)00407-3 pmid: 14522301
[18] APPLEGATE M B, PARTLOW B P, COBURN J, et al. Silk fibroin: photocrosslinking of silk fibroin using riboflavin for ocular prostheses[J]. Advanced Materials, 2016,28(12):2464-2464.
[19] TESHIMA W, NOMURA Y, TANAKA N, et al. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes[J]. Biomaterials, 2003,24(12):2097-2103.
[20] WANG C, WANG L, YI H, et al. Fabrication of reactive pigment composite particles for blue-light curable inkjet printing of textiles[J]. RSC Advances, 2017,57(7):36175-36184.
[21] CUI K J, ZHU C Z, ZHANG H, et al. Blue laser diode-initiated photosensitive resins for 3D printing[J]. Journal of Materials Chemistry C, 2017(5):12035-12038.
[22] GRASSINO S B, STRUMIA M C, COUVE J, et al. Photoactive films obtained from methacrylo-urethanes tannic acid-based with potential usage as coating materials: analytic and kinetic studies[J]. Progress in Organic Coatings, 1999,37(1/2):39-48.
[23] COOK W D, CHEN F. Enhanced photopolymerization of dimethacrylates with ketones, amines, and iodonium salts: the CQ system[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(23):5030-5041.
[24] JAKUBIAK J, ALLONAS X, FOUASSIER J P, et al. Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization[J]. Polymer, 2003,44(18):5219-5226.
[25] KOLLER T, SCHUMACHER S, SEILER T. Riboflavin/ultraviolet a crosslinking of the paracentral cornea[J]. Cornea, 2013,32(2):165-168.
pmid: 23187160
[26] HAN S, LIN C C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoini-tiator[J]. Macromolecular Rapid Communications, 2013,34(3):269-273.
doi: 10.1002/marc.201200605 pmid: 23386583
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!