纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 94-100.doi: 10.13475/j.fzxb.20200101907

• 染整与化学品 • 上一篇    下一篇

植酸作用下锆离子修饰羽绒及其保温性能

应丽丽1, 李长龙1, 王宗乾1(), 王邓峰1, 吴开明2, 谢伟2, 程欢1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽古麒绒材股份有限公司, 安徽 芜湖 241008
  • 收稿日期:2020-01-14 修回日期:2020-07-09 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 王宗乾
  • 作者简介:应丽丽(1996—),女,硕士生。主要研究方向为功能纺织品。
  • 基金资助:
    安徽省重点研究与开发计划项目(1804a09020077);安徽省重点研究与开发计划项目(202004a06020055);安徽省重大科技专项(201903a05020028);芜湖市科技计划项目(2020yf51);安徽省高校学科(专业)中青年拔尖人才学术资助项目(gxbjZD2020075)

Modification of down by zirconium ion with phytic acid and its thermal insulation performance

YING Lili1, LI Changlong1, WANG Zongqian1(), WANG Dengfeng1, WU Kaiming2, XIE Wei2, CHENG Huan1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Guqi Down Material Incorporated Company, Wuhu, Anhui 241008, China
  • Received:2020-01-14 Revised:2020-07-09 Online:2020-10-15 Published:2020-10-27
  • Contact: WANG Zongqian

摘要:

锆离子修饰可提升羽绒的保温性能,为进一步提高锆离子负载量和坚牢度,缩短工艺流程,采用植酸对羽绒进行预处理后,将其浸渍于硫酸锆溶液中,经螯合吸附制得锆离子修饰功能羽绒,借助扫描电子显微镜、X射线衍射光谱仪、电感耦合等离子光谱仪、红外光谱仪等对修饰羽绒的结构进行表征,远红外辐射发热仪、平板保温仪对修饰前后羽绒的红外温升及保温性能进行测试。结果表明:经植酸预处理的锆离子修饰工艺不损伤羽绒原有的绒小枝及夹角特征形貌,修饰羽绒的蓬松度、清洁度、残脂率指标满足羽绒标准要求;植酸预处理显著提升了羽绒对锆离子的吸附量,修饰羽绒的红外温升和保温系数分别提高40%和8.1%;锆离子、植酸与羽绒纤维之间主要以共价螯合方式结合,具有良好的水洗牢度,经9次水洗锆离子仍维持较高负载量。

关键词: 羽绒, 植酸, 锆离子, 保温性能, 保温机制

Abstract:

Zirconium ion (Zr4+) modification can improve the thermal insulation of down. For further improving the Zr4+ load to shorten the modification process, the Zr4+modified functional down was prepared through phytic acid pretreatment and direct impregnation with zirconium sulfate solution based on chelating adsorption. The modified down was characterized by scanning electron microscope, X-ray diffraction spectrometer, inductively coupled plasma spectrometer and infrared spectroscopy and so on. Meanwhile, far-infrared radiation calorimeter and flat insulation meter were used to test the infrared temperature rise and thermal insulation performance of down before and after modification. The results show that the original feather twigs and the angles are not damaged by the Zr4+ modification with the pretreatment of phytic acid, while the fluffy, cleanliness and residual fat ratio of modified down are found to meet the requirements of the down standard. The adsorption capacity to Zr4+of the treated down is significantly enhanced, and the infrared temperature rise and heat preservation coefficient of the modified down are increased by 40% and 8.1%, respectively. The Zr4+, phytic acid and down fibers are mainly combined by covalent chelation, which has excellent washing fastness, and the load of Zr4+ on down fibers maintains a high level after 9 times of washing.

Key words: down, phytic acid, zirconium ion, thermal insulation performance, thermal insulation mechanism

中图分类号: 

  • TS959.16

图1

修饰前后羽绒形貌图"

表1

修饰前后羽绒表面元素含量百分比"

试样名称 C N O P Zr
羽绒原样 42.45 36.88 20.66
Zr4+修饰羽绒 45.84 21.65 19.03 5.21 8.27

图2

修饰羽绒EDS元素密度分布图"

图3

不同羽绒的红外谱图"

图4

不同羽绒样品的XRD图谱"

图5

溶液中Zr4+定量标准曲线"

表2

不同羽绒样品表面锆离子负载量"

样品名称 残液Zr4+浓度/
(mg·L-1)
Zr4+吸附量/
(mg·g-1)
相对标
准偏差
羽绒原样 36.50 4.50 0.81
预处理羽绒 2.04 16.0 1.94

图6

水洗次数对修饰羽绒Zr4+吸附量的影响"

图7

修饰羽绒的红外温升曲线及机制"

表3

不同羽绒样品的保温性能"

样品名称 保暖率/% 克罗值
羽绒原样 73.8 2.251
Zr4+修饰羽绒 81.9 2.936

表4

修饰对羽绒品质指标的影响"

类型 蓬松
度/cm
耗氧量/
(mg·(100 g)-1)
清洁
度/mm
残脂
率/%
外观
羽绒原样 18.6 5.5 950 0.95 白色
Zr4+修饰羽绒 18.2 5.6 950 0.90 轻微色
国标要求 ≥16.5 ≤5.6 ≥500 ≤1.2
[1] 高晶, 于伟东, 潘宁. 羽绒纤维的形态结构表征[J]. 纺织学报, 2007,28(1):1-4.
GAO Jing, YU Weidong, PAN Ning. Characterization of down morphological structure[J]. Journal of Textile Research, 2007,28(1):1-4.
[2] YANG Shu, YU Weidong, PAN Ning. Fractal phenomenon in sound absorbing behavior of down fiber assembly[J]. Textile Research Journal, 2011,81(11):1139-1144.
doi: 10.1177/0040517511398949
[3] DABROWSKA A K, BARTOWIAK G, KARCZ J, et al. Assessment of the non-woven, goose down and duck down as thermally insulating materials for the clothing protecting against cold[J]. International Journal of Clothing Science and Technology, 2017,29(3):380-393.
doi: 10.1108/IJCST-08-2016-0094
[4] 杨崇岭, 关丽涛, 赵耀明, 等. 羽毛的化学改性及其对Cu(Ⅱ)的吸附[J]. 农业环境科学学报, 2007(1):344-349.
YANG Chongling, GUAN Litao, ZHAO Yaoming, et al. Modification of feather and its sorption behavior to Cu (Ⅱ)[J]. Journal of Agro-Environment Science, 2007(1):344-349.
[5] 李秋雁, 齐鲁, 刘思. 羽绒纤维经戊二醛接枝二氰二胺处理后的阻燃性能[J]. 毛纺科技, 2012,40(6):26-29.
LI Qiuyan, QI Lu, LIU Si. Flame-retardant properties of down fibers grafted dicyandiamide by glutaradehyde[J]. Wool Textile Journal, 2012,40(6):26-29.
[6] LI Huihao, QI Lu, LI Jun. Effects of DTAC on the warmth retention of down fiber based on response surface method[J]. Fibers and Polymers, 2016,17(7):1115-1122.
doi: 10.1007/s12221-016-5796-1
[7] 王志伟, 齐鲁. 采用1-膦酸丙烷-1,2-二羧酸的羽绒纤维阻燃改性[J]. 纺织学报, 2015,36(10):7-11.
WANG Zhiwei, QI Lu. Flame-retardant modification of down fibers by 1-phosphonopropane-1,2-dicarboxylic acid[J]. Journal of Textile Research, 2015,36(10):7-11.
[8] 张国铭, 黎彧, 邹训重, 等. 微波协同纳米二氧化钛对羽绒的抗菌效果研究[J]. 现代化工, 2015,35(12):109-111.
ZHANG Guoming, LI Yu, ZOU Xunchong, et al. Antibacterial effect of nanometer titanium dioxide on feather assisted with microwave[J]. Modern Chemical Industry, 2015,35(12):109-111.
[9] SHIRGHOLAMI M A, KARIMI L, MIRJALILI M. Multifunctional modification of wool fabric using graphene/TiO2nanocomposite[J]. Fibers and Polymers, 2016,17(2):220-228.
doi: 10.1007/s12221-016-5838-8
[10] LI Huihao, QI Lu, LI Jun. Preparation and warmth retention of down fiber grafted with Zirconium Oxychloride[J]. Journal of Engineered Fabrics & Fibers, 2017,12(2):1-11.
[11] 王宗乾, 孙瑞霞, 谢伟, 等. 一种防沾污免洗羽毛绒的加工方法: 107700223A[P]. 2018-02-16.
WANG Zongqian, SUN Ruixia, XIE Wei, A processing method of stain proof and wash free feather down: 107700223A[P]. 2018-02-16.
[12] SUN Ruixia, WANG Zongqian, PAN Ning, et al. A new technique to clean down and feather dust: Composition and resolution of down dust[J]. Textile Research Journal, 2019,89(15):3080-3088.
doi: 10.1177/0040517518809047
[13] LI Huihao, QI Lu, LI Jun. Effects of DTAC on the warmth retention of down fiber based on response surface method[J]. Fibers and Polymers, 2016,17(7):1115-1122.
doi: 10.1007/s12221-016-5796-1
[14] 陈琳聿, 齐鲁. 吸附金属锆离子提高羽绒纤维保暖性研究[J]. 毛纺科技, 2016,44(6):50-53.
CHEN Linyu, QI Lu. Improving the heat preservation performance of down fiber through absorbing modifica-tion[J]. Wool Textile Journal, 2016,44(6):50-53.
[15] OATWAY L, VASANTHAN T, HELM J H. Phytic acid[J]. Food Reviews International, 2001,17(4):419-431.
doi: 10.1081/FRI-100108531
[16] ANGEL R, TAMIM N M, APPLEGATE T J, et al. Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy[J]. Journal of Applied Poultry Research, 2002,11(4):471-480.
doi: 10.1093/japr/11.4.471
[17] 冯屏, 冯小兵, 徐玉佩. 植酸与金属离子络合的研究[J]. 中国油脂, 2006(8):63-66.
FENG Ping, FENG Xiaobing, XU Yupei. Complexation of phytic acid with metal ions[J]. China Oils and Fats, 2006,31(8):63-66.
[18] THOTA S, SOMISETTI V, KULKARNI S, et al. Covalent functionalization of cellulose in cotton and a nylon-cotton blend with phytic acid for flame retardant properties[J]. Cellulose, 2020,27(1):11-24.
doi: 10.1007/s10570-019-02801-6
[19] 刘新华, 储兆洋, 李永, 等. 基于植酸改性的羽毛吸附材料的制备及其性能[J]. 功能高分子学报, 2017,30(3):354-359.
LIU Xinhua, CHU Zhaoyang, LI Yong, et al. Preparation and properties of feather adsorbent material based on phytic acid modification[J]. Journal of Functional Polymers, 2017,30(3):354-359.
[20] WANG Hong, JIN Xiangyu, WU Haibo. Adsorption and desorption properties of modified feather and feather/polypropylene melt-blown filter cartridge of lead ion (Pb 2+) [J]. Journal of Industrial Textiles, 2016,46(3):852-867.
doi: 10.1177/1528083715598896
[21] 王素梅, 张慧珍, 李净岩, 等. 氧化钇稳定氧化锆中氧化锆含量的测定[J]. 稀土, 2015,36(3):105-108.
WANG Sumei, ZHANG Huizhen, LI Jingyan, et al. Determination of Zirconium Oxide content in Yttria Stabilized Zirconia[J]. Chinese Rare Earths, 2015,36(3):105-108.
[22] SENGUPTA A, THULLASIDAS S K, NATARAJAN V. Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF: a comparative study[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015,303(3):2421-2429.
[23] 李长龙, 刘琼, 王宗乾, 等. 羽毛绒水解工艺优化及其产物成膜性能[J]. 纺织学报, 2014,35(7):23-29.
LI Changlong, LIU Qiong, WANG Zongqian, et al. Hydrolysis process optimization of feather & down powder and its hydrolysate film forming property[J]. Journal of Textile Research, 2014,35(7):23-29.
[24] 张秀萍, 齐鲁. 通过接枝改性提高羽绒纤维保暖性能的探究[J]. 毛纺科技, 2015,43(8):36-39.
ZHANG Xiuping, QI Lu. Improving the heat preservation performance of down fiber through grafting modification[J]. Wool Textile Journal, 2015,43(8):36-39.
[1] 马颜雪, 王世娜, 李毓陵, 温润. 方格立衬结构机织物的一次成形设计实践[J]. 纺织学报, 2020, 41(06): 42-47.
[2] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[3] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell 织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[4] 陶俊 王府梅 刘美娜 罗胜利. 上装保温性能测试新方法[J]. 纺织学报, 2017, 38(06): 92-99.
[5] 陈纲 杜兆芳 张利玲 梅毓 孙超. 农业覆盖用非织造布的保温性能[J]. 纺织学报, 2014, 35(5): 67-0.
[6] 曹机良 孟春丽. 腐植酸钠对棉织物的吸附性能[J]. 纺织学报, 2013, 34(7): 74-78.
[7] 万旺军 邓同乐 计芬芬 葛建 付贤树 邬佳丽. 羽毛绒种类鉴定及气味检测方法研究[J]. 纺织学报, 2013, 34(3): 15-19.
[8] 周岚;汤利桥;俞杭芳;邵建中;. 灰色羽绒的漂白技术[J]. 纺织学报, 2011, 32(1): 59-66.
[9] 吴刚;赵珊红;王华雄;吴俭俭;郭方龙;王力君;谢维斌;宋保国;叶庆富. 加速溶剂萃取-高效液相色谱测定羽绒羽毛中的烷基苯酚与聚氧乙烯醚[J]. 纺织学报, 2010, 31(3): 72-77.
[10] 刘维;周苏萌;韩仕峰;王府梅. 羽绒/木棉混纤絮料的性能[J]. 纺织学报, 2007, 28(11): 17-20.
[11] 高晶;于伟东;潘宁. 羽绒纤维的形态结构表征[J]. 纺织学报, 2007, 28(1): 1-4.
[12] 高晶;于伟东. 羽绒纤维的吸湿性能[J]. 纺织学报, 2006, 27(11): 28-31.
[13] 张建春;郝新敏;岳素娟;郭玉海. 羽绒絮毡复合PTFE膜保暖材料的研究[J]. 纺织学报, 2004, 25(04): 38-39.
[14] 金阳;李益民;李薇雅. 羽绒与其它蛋白质纤维理化性能的比较[J]. 纺织学报, 2003, 24(06): 83-84.
[15] 金阳;李益民;李薇雅. 羽绒纤维与其它蛋白质纤维结构的比较[J]. 纺织学报, 2003, 24(05): 41-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!