纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 137-143.doi: 10.13475/j.fzxb.20201102208

• 服装工程 • 上一篇    下一篇

连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用

王诗潭1, 汪秀花1, 王云仪1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2020-11-11 修回日期:2021-02-25 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 王云仪
  • 作者简介:王诗潭(1992—),女,博士生。主要研究方向为服装人体工效学与功能服装。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232021G-08);东华大学研究生创新基金项目(CUSF-DH-D-2020089)

Determination and application of air gap parameters in coverall fit analysis

WANG Shitan1, WANG Xiuhua1, WANG Yunyi1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-11-11 Revised:2021-02-25 Published:2021-09-15 Online:2021-09-27
  • Contact: WANG Yunyi

摘要:

为量化表征连体服与人体的空间关系并构建服装合体性的客观评价指标,利用三维人体扫描仪对7种姿势下的裸态人体和着装人体进行扫描。通过三维图像分析确定了受姿势影响的关键部位,并提取了22个衣下间隙指标。以主观合体度评分为标准,确定了9个衣下间隙特征指标,并对不同姿势下特征指标的变化规律进行了探讨。利用因子分析构建了基于衣下间隙特征指标的服装合体性综合评价方程。结果表明:构建的服装合体性评价方程的计算结果排序与主观合体度的评价结果排序一致,具有理想的评估效果;同站姿相比,抬臂和弯腰姿势显著降低了衣下间隙大小,裆长差下降高达64%,且姿势越复杂下降程度越明显;胸背部、臀裆部和腿部是影响连体服合体性的重点区域。

关键词: 衣下间隙, 服装合体性, 连体服, 特征指标, 三维扫描

Abstract:

This study was to quantify the interaction between human body and coverall garments, aiming to create a quantitative index for clothing fit analysis. Naked and clothed human bodies were scanned with 7 postures using a 3-D body scanner. 22 air gap parameters were extracted by 3-D scanned image analysis, from which 9 typical parameters were determined. An evaluation equation of clothing fit based on the typical air gap parameters was finally built using factor analysis. The results indicate that the newly proposed fit evaluation equation offers satisfactory evaluation effect. In addition, it is observed that arm lifting and bending postures would significantly reduce the air gap compared to the standing posture. In particular, the more complex the postures, the wider the range of influence; for instance for arm lifting and bending postures the crotch length decreased about 64%. Chest and back, hip and crotch and leg were identified as the primary regions influencing coverall fit.

Key words: air gap, clothing fit analysis, coverall, parameter, 3-D scanning

中图分类号: 

  • TS941.16

图1

测试连体服款式图"

表1

测试连体服的细部尺寸"

衣长 胸围 腰围 臀围 肩宽 袖长 裆长
134.5 104 104 104 39 56 35

表2

受试者的基本情况"

年龄/岁 身高/cm 体重/kg 胸围/cm 腰围/cm 臀围/cm
25±3 160±2 50±2 82±3 60±2 88±4

图2

扫描姿势"

图3

姿势固定装置"

图4

衣下间隙指标示意图"

图5

站姿和抬臂对齐图像"

图6

人体区段及截面划分示意图"

表3

主观合体度与各特征指标的相关性"

检验
指标
裆长差 整体厚度 腿部厚度 整体面积差 腰围截面
面积差
膝围截面
面积差
整体体
积差
手臂体
积差
腿部体
积差
r -0.892 -0.828 -0.898 -0.861 -0.834 -0.861 -0.868 -0.836 -0.908
P 0.003 0.010 0.003 0.006 0.010 0.006 0.006 0.009 0.002

表4

不同姿势下的衣下间隙值"

扫描姿势 裆长差/
cm
整体厚度/
cm
腿部厚度/
cm
整体面积
差/cm2
腰围截面
面积差/cm2
膝围截面
面积差/cm2
整体
体积差/cm3
手臂体积
差/cm3
腿部体积
差/cm3
站姿 11.75 1.56 1.34 3 411.51 316.42 57.96 71 244.37 2 296.61 7 988.69
抬臂105° 8.36 1.63 1.06 3 432.04 309.63 47.51 71 267.32 2 172.57 5 898.66
抬臂135° 8.09 1.54 0.95 3 068.06 316.67 45.48 70 301.27 2 216.54 5 180.62
抬臂155° 7.56 1.474 0.88 2 908.03 288.64 43.74 69 487.95 2 116.46 4 911.12
弯腰动作1 6.01 1.17 0.75 2 276.60 318.20 43.90 65 741.81 2 268.68 4 604.49
弯腰动作2 4.34 1.14 0.58 1 799.98 257.25 39.61 64 185.68 2 168.90 3 107.19
弯腰动作3 4.23 0.99 0.57 1 639.71 238.21 39.42 62 228.11 2 003.06 3 030.31

表5

因子成分得分系数矩阵"

因子 裆长差 整体厚度 腿部厚度 整体面积差 腰围截面面积差 膝围截面面积差 整体体积差 手臂体积差 腿部体积差
1 0.159 0.291 0.166 0.25 -0.149 0.084 0.260 -0.378 0.100
2 -0.011 -0.240 -0.021 -0.162 0.450 0.094 -0.179 0.782 0.082

表6

因子综合得分及排序"

姿势 F1 F2 F 排序
站姿 0.827 0.253 1.080 1
抬臂105° 0.786 -0.086 0.700 2
抬臂135° 0.276 0.068 0.344 3
抬臂155° 0.422 -0.196 0.226 4
弯腰动作1 -0.885 0.353 -0.532 5
弯腰动作2 -0.846 -0.032 -0.878 6
弯腰动作3 -0.580 -0.360 -0.940 7

表7

代表性指标与其他指标回归分析的结果"

指标 Y X a b R2 P
厚度 裆长差 整体厚度 8.383 -4.80 0.727 0.015
腿部厚度 0.945 -0.40 0.736 0.014
面积 腰围截面面积差 整体面积差 0.035 199.46 0.644 0.030
膝围截面面积差 0.007 27.16 0.646 0.029
体积 手臂体积差 整体体积差 0.013 1 946.54 0.540 0.022
腿部体积差 0.362 -1 529.95 0.878 0.009
[1] HUCK J, KIM Y. Coveralls for grass fire fighting[J]. International Journal of Clothing Science and Technology, 1997, 9(5):346-359.
doi: 10.1108/09556229710185497
[2] HUCK J, MAGANGA O, KIM Y. Protective overalls?: evaluation of garment design and fit[J]. International Journal of Clothing Science and Technology, 2007, 9(1):45-61.
doi: 10.1108/09556229710157876
[3] 张龙女, 王云仪, 李亿光. 油罐清洁连体作业服的开发和工效学评价[J]. 纺织学报, 2013, 34(8):105-109.
ZHANG Longnv, WANG Yunyi, LI Yiguang. Development and ergonomic evaluation of overall for oil tank cleaners[J]. Journal of Textile Research, 2013, 34(8):105-109.
[4] HAVENITH G, HEUS R. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004, 35(1):3-20.
doi: 10.1016/j.apergo.2003.11.001
[5] ASHDOWN S, LOKER S, SCHOENFELDER K, et al. Using 3D scans for fit analysis[J]. Journal of Textile and Apparel, Technology and Management, 2004, 4(1):1-12.
[6] ALEXANDER M, JO CONNEL L, PRESLEY A B. Clothing fit preferences of young female adult consumers[J]. International Journal of Clothing Science and Technology, 2005, 17(1):52-64.
doi: 10.1108/09556220510577961
[7] BOORADY L. Functional clothing-principles of fit[J]. Indian Journal of Fibre & Textile Research, 2011, 36:344-347.
[8] 许轶超, 丁永生. 服装合体性评价的研究方法与应用进展[J]. 纺织学报, 2007, 28(10):127-130.
XU Yichao, DING Yongsheng. Research and application of garment fit assessments[J]. Journal of Textile Research, 2007, 28(10):127-130.
doi: 10.1177/004051755802800204
[9] SONG H, ASHDOWN S P. An exploratory study of the validity of visual fit assessment from three-dimensional scans[J]. Clothing and Textiles Research Journal, 2010, 28(4):263-278.
doi: 10.1177/0887302X10376411
[10] LOKER S, ASHDOWN S, SCHOENFELDER K. Size-specific analysis of body scan data to improve apparel fit[J]. Journal of Textile and Apparel, Technology and Management, 2005, 4(3):1-15.
[11] LU Y, SONG G, LI J. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6):1439-1446.
doi: 10.1016/j.apergo.2014.04.007
[12] WANG S, WANG X, WANG Y. Effects of clothing ease and body postures on the air gap and clothing coverage[J]. International Journal of Clothing Science and Technology, 2019, 31(4):578-594.
doi: 10.1108/IJCST-12-2018-0158
[13] 汪秀花. 基于衣下间隙的连体防护服活动性的量化表征研究[D]. 上海:东华大学, 2018:12-14.
WANG Xiuhua. Study on quantitative characterization of mobility of protective coveralls based on air gap[D]. Shanghai:Donghua University, 2018:12-14.
[1] 赵倩, 邓咏梅. 基于层次分析法的三维人体扫描仪的选择[J]. 纺织学报, 2021, 42(04): 155-161.
[2] 刘芸, 修毅. 基于B/S架构的数字人台变形NURBS曲面模型[J]. 纺织学报, 2020, 41(10): 137-143.
[3] 肖平, 张昭华, 周莹, 刘佳锴, 唐颢源. 手臂活动角度对服装局部热阻的影响[J]. 纺织学报, 2020, 41(02): 109-114.
[4] 余佳佳, 李健. 基于不同人体测量方法的数据一致性和可替换性研究[J]. 纺织学报, 2019, 40(09): 167-172.
[5] 史玉媛 申鸿 魏振乾. 腰省量分配对无袖修身旗袍造型的影响[J]. 纺织学报, 2018, 39(08): 105-109.
[6] 张昭华 倪军 王文玲 曾恋 胡青青 韩依恬. 服装款式特征对人体局部传热性能的影响[J]. 纺织学报, 2018, 39(05): 92-96.
[7] 敖利民 郁崇文 李春钢. 基于布面毛羽特征变化的织物烧毛效果评价[J]. 纺织学报, 2015, 36(04): 102-106.
[8] 尹玲 张文斌 许才国. 基于有序样本最优分割法的女性体型分类[J]. 纺织学报, 2014, 35(9): 114-0.
[9] 张龙女 王云仪 李亿光. 油罐清洁连体作业服的开发和工效学评价[J]. 纺织学报, 2013, 34(8): 105-0.
[10] 张林彦 敖利民 郁崇文. 基于布面毛羽特征参数测试的织物抗起毛性客观评价[J]. 纺织学报, 2013, 34(4): 57-63.
[11] 杨刚;;钟跃崎;. 基于同层穿透补偿的扫描服装模型的重用性[J]. 纺织学报, 2010, 31(10): 134-138.
[12] 石尖锋;李重;胡觉亮;金耀. 三维服装模型上的边界提取与编辑[J]. 纺织学报, 2010, 31(1): 129-133.
[13] 陈晓玲;刘驰;聂存云. 上装合体性主观评价信度与效度的元评估[J]. 纺织学报, 2009, 30(07): 107-111.
[14] 徐继红;张文斌. 人体与服装特征曲面间距离松量的影响因子[J]. 纺织学报, 2009, 30(05): 104-108.
[15] 陶晨. 混纺纱截面图像分析中的光斑扩散模型[J]. 纺织学报, 2009, 30(04): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!