纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 17-23.doi: 10.13475/j.fzxb.20210201708

• 特约专栏:智能纤维与制品 • 上一篇    下一篇

聚N-异丙基丙烯酰胺/聚氨酯梯度复合膜的温敏亲-疏水性及透湿性

杨群1,2,3(), 梁琦1, 王黎明1, 代正伟3   

  1. 1.上海工程技术大学 纺织服装学院, 上海 201620
    2.上海纺织化学清洁生产工程技术研究中心, 上海 201620
    3.浙江省纱线材料成形与复合加工技术研究重点实验室, 浙江 嘉兴 314001
  • 收稿日期:2021-02-05 修回日期:2021-06-06 出版日期:2021-09-15 发布日期:2021-09-27
  • 作者简介:杨群(1981—),女,副教授,博士。主要研究方向为功能与智能纺织材料及膜材料的设计与应用。E-mail: yangqun@sues.edu.cn
  • 基金资助:
    浙江省自然科学基金青年基金项目(LQ18E030006);上海工程技术大学科研启动项目(0239-E3-0507-19-05165);浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC-2020-23)

Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane

YANG Qun1,2,3(), LIANG Qi1, WANG Liming1, DAI Zhengwei3   

  1. 1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
    3. Zhejiang Provincial Key Laboratory of Yarn Material Forming and Compound Processing Technology Research, Jiaxing, Zhejiang 314001, China
  • Received:2021-02-05 Revised:2021-06-06 Published:2021-09-15 Online:2021-09-27

摘要:

为解决智能防水透湿膜材料温敏响应度低和温敏透湿通量不足的问题,将聚N-异丙基丙烯酰胺(PNIPAM)通过涂覆的方式复合于具有多级孔结构的聚氨酯(PU)梯度膜上,通过调控PNIPAM的涂覆量制备PNIPAM/PU梯度复合膜,并对复合膜的结构、温敏亲-疏水性和温敏湿热传递性进行研究。结果表明:PNIPAM温敏层的构筑不仅没有改变膜材料的多级孔结构,还赋予了梯度复合膜材料温敏亲-疏水转变性能,即低于转变温度(30 ℃)时表现为亲水性,高于转变温度时表现为疏水性;PNIPAM的引入提高了梯度复合膜的温敏透湿通量,50 ℃时PNIPAM质量分数为6%的梯度复合膜的透湿率为6 398.3 g/(m2·24 h),高于PU膜的透湿率(4 843.4 g/(m2·24 h)),且PNIPAM的质量分数越高,梯度复合膜的溶胀性随温度的增加下降越显著。

关键词: 多级孔, 梯度膜, 温敏性, 亲-疏水转变, 透湿性, 功能纺织材料

Abstract:

To improve the temperature-sensitivity and moisture permeability of intelligent waterproof and moisture permeable membrane, poly-N-isopropylacrylamide (PNIPAM) was coated on hierarchical pore polyurethane (PU) membranes and PNIPAM/PU gradient composite membranes were prepared by adjusting the mass fraction of PNIPAM. Structure, thermo-sensitive hydrophilic-hydrophobic and thermo-sensitive moisture permeability were investigated. The results show that the construction of PNIPAM does not change the hierarchical pore structure. It has thermo-sensitive hydrophilic-hydrophobic transition properties, exhibiting hydrophilicity when temperature below the transition temperature (30 ℃), and hydrophobicity when temperature above this temperature. Meanwhile, the introduction of PNIPAM improves thermo-sensitive moisture permeability, from 4 843.4 g/(m2·24 h) of PU to 6 398.3 g/(m2·24 h) of PNIPAM/PU gradient composite membrane at 50 ℃ when mass fraction of PNIPAM is 6%. It was also found that the higher the content of PNIPAM, the more significant decrease in swelling property with the temperature increase.

Key words: hierarchical pore, gradient membrane, thermo-sensitive, hydrophilic-hydrophobic transition, moisture permeability, functional textile material

中图分类号: 

  • TB381

图1

PU梯度膜的扫描电镜照片"

图2

不同质量分数PNIPAM制备的PNIPAM/PU梯度复合膜截面扫描电镜照片"

图3

PU梯度膜、PNIPAM和PNIPAM/PU梯度复合膜的红外光谱图"

图4

PU梯度膜和PNIPAM/PU梯度复合膜的平衡溶胀率随温度的变化"

图5

PU梯度膜和PNIPAM/PU梯度复合膜接触角随时间的变化"

图6

25和60 ℃时PNIPAM/PU梯度复合膜上水滴形态随时间的变化"

图7

不同温度下PNIPAM/PU梯度复合膜透湿性随时间的变化"

表1

PNIPAM/PU梯度复合膜的透湿性"

温度/℃ 透湿率/(g·m-2·(24 h)-1)
PU梯度膜 PNIPAM/PU梯度复合膜
25 210 150
50 4 843.4 6 398.3

图8

PU梯度膜、PNIPAM和PNIPAM/PU梯度复合膜热性能"

[1] ZHAO J, WANG X F, LIU L F, et al. Human skin-like, robust waterproof, and highly breathable fibrous membranes with short perfluorobutyl chains for eco-friendly protective textiles[J]. ACS Applied Materials & Interfaces, 2018, 10(36):30887.
[2] WANG Y, MA K, XIN J. Stimuli-responsive bioinspired materials for controllable liquid manipulation: principles, fabrication, and applications[J]. Advanced Functional Materials, 2018, 28(6):1705128.
doi: 10.1002/adfm.v28.6
[3] SHAO L N, DAI J, ZHANG J H, et al. Designing temperature-memory effects in semicrystalline polyurethane[J]. RSC Advances, 2015, 57(5):46307-46315.
[4] 刘美惠, 沈惠玲. 湿法成膜法制备聚氨酯微孔膜过程中的非溶剂效应[J]. 塑料科技, 2018, 46(1):32-36.
LIU Meihui, SHEN Huiling. Nonsolvent effect on fabrication of microporous PU membranes in wet phase separation process[J]. Plastics Science and Technology, 2018, 46(1):32-36.
[5] HESKINS M, GUILLET J E. Solution properties of poly (N-isopropylacrylamide)[J]. Journal of Macromolecular Science-Chemistry, 1968, 2(8):1441-1455.
doi: 10.1080/10601326808051910
[6] MA H, ZHANG H X, CAO J D, et al. Temperature-responsive and piezoresistive performances of poly(N-isopropylacrylamide)-grafted reduced graphene oxide smart fiber[J]. Composites Science and Technology, 2019, 169:186-194.
doi: 10.1016/j.compscitech.2018.11.004
[7] HABA Y, KOJIMA C K, HARADA A, et al. Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups[J]. Angewandte Chemie International Edition, 2007, 46(1/2):234.
doi: 10.1002/(ISSN)1521-3773
[8] 唐俊, 沈旺华, 陈明清, 等. 聚(N-异丙基丙烯酰胺)水凝胶微控阀的制备与性能[J]. 江南大学学报(自然科学版), 2006(1):92-95.
TANG Jun, SHEN Wanghua, CHEN Mingqing, et al. Properties of thermoresponsive hydrogels microfluidic valve based on poly(N-isopropylacrylamide)[J]. Journal of Jiangnan University (Natural Science Edition), 2006(1):92-95.
[9] LIU J C, YU L J, YUE G C, et al. Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control[J]. Advanced Functional Materials, 2019, 29(12):1808501.
doi: 10.1002/adfm.v29.12
[10] WANG Y C, DAI Z W, XUE Y. Synjournal and characterization of temperature-sensitive TSPU/PNIPAAm semi-IPN polymer[J]. Advanced Material Research, 2012, 399/401:359-362.
doi: 10.4028/www.scientific.net/AMR.399-401
[11] 代正伟, 赵书梅, 薛元. PU/PNIPAM semi-IPN微孔膜温度响应性研究[J]. 高分子学报, 2012(5):508-512.
DAI Zhengwei, ZHAO Shumei, XUE Yuan. Temperature-sensitive of PU/PNIPAM semi-IPN microporous membranes[J]. Acta Polymerica Sinica, 2012(5):508-512.
[1] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[2] 张文娟, 纪峰, 张瑞云, 赵晓杰, 王妮, 王俊丽, 张建祥. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(01): 67-72.
[3] 李智勇 邵一卿 孙窈 张亮 夏鑫. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10): 7-12.
[4] 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93.
[5] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[6] 刘雷艮 沈忠安 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(07): 12-16.
[7] 王维明 虞波 周丹红 冯云. 碱氧处理对阳离子可染中空聚酯针织物服用性能的影响[J]. 纺织学报, 2014, 35(4): 88-0.
[8] 孙戒;邵飞鹰;汪海波. γ—聚谷氨酸整理涤/棉织物的舒适性[J]. 纺织学报, 2009, 30(04): 65-68.
[9] 黄建华;钱晓明. 织物透湿性测试方法的比较[J]. 纺织学报, 2008, 29(8): 45-47.
[10] 钟安华;徐卫林;崔卫刚;彭旭锵;张元. 灰色评判环境因素对皮革透湿性的影响程度[J]. 纺织学报, 2007, 28(7): 98-100.
[11] 刘书芳;顾振亚. 温敏性水凝胶在智能纺织品开发中的应用[J]. 纺织学报, 2007, 28(11): 139-143.
[12] 黄建华. 织物透湿性测试新方法[J]. 纺织学报, 2007, 28(10): 30-33.
[13] 钟安华;崔卫刚;徐卫林;彭旭锵;邓春雨. 羊毛粉体改性PU膜的透湿性能[J]. 纺织学报, 2007, 28(1): 18-21.
[14] 徐旭凡;王善元. 聚氨酯转移涂层织物的透湿防水性能[J]. 纺织学报, 2005, 1(3): 82-84.
[15] 徐旭凡. MCMC对聚氨酯膜防水透湿性能的影响[J]. 纺织学报, 2005, 26(2): 64-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!