纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 126-131.doi: 10.13475/j.fzxb.20210401806

• 染整与化学品 • 上一篇    下一篇

铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色

王静, 娄娅娅, 王春梅()   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2021-04-07 修回日期:2022-05-26 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 王春梅
  • 作者简介:王静(1996—),女,硕士生。主要研究方向为光催化材料。
  • 基金资助:
    江苏省研究生科研创新计划项目(SJKY19_2062)

Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites

WANG Jing, LOU Yaya, WANG Chunmei()   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2021-04-07 Revised:2022-05-26 Published:2022-08-15 Online:2022-08-24
  • Contact: WANG Chunmei

摘要:

为提高铁基金属–有机框架材料MOF(Fe)的重复使用性能,以均苯三甲酸、硫酸亚铁、活性碳纤维(ACF)为原料,采用室温原位生长法制备了铁基金属–有机框架材料/活性碳纤维复合材料MOF(Fe)/ACF。借助傅里叶红外光谱仪、扫描电子显微镜、能谱仪、X射线衍射仪对复合材料的结构、形貌、元素组成等进行了表征;测试了复合材料在不同条件下对50 mg/L活性黑KN–B染液的脱色效果,并探讨了光催化降解染料的机制。结果表明:黑暗条件下,分别在不加双氧水和加入0.12 mL/L双氧水时反应60 min后,MOF(Fe)/ACF对活性黑KN–B染液的脱色率分别为64.7%和80.2%;在1 000 W氙灯光照下,加入0.12 mL/L双氧水反应60 min后,MOF(Fe)/ACF 对活性黑KN–B染液的脱色率达95.7%,比ACF高52.2%;重复使用5次,MOF(Fe)/ACF对活性黑KN–B染液的脱色率仍可达86.0%。

关键词: 金属–有机框架材料, 活性碳纤维, 染料脱色, 光催化, 印染废水, 废水处理

Abstract:

In order to improve the reusability of iron-based metal\|organic framework (MOF(Fe)), MOF(Fe)/activated carbon fiber composites (MOF(Fe)/ACF) were prepared by in-situ growth at room temperature using pyromellitic acid, ferrous sulfate and activated carbon fiber (ACF). The structure, morphology and elemental composition of the composites were characterized by Fourier transform infrared spectrometer, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The decolorization of composites on 50 mg/L Reactive Black KN–B was tested under different conditions, and the mechanism of photocatalytic degradation of dye was discussed. The results showed that the decolorization ratio of composite material on Reactive Black KN–B was 64.7% after 60 min reaction without hydrogen peroxide and 80.2% with 0.12 mL/L hydrogen peroxide. Under the condition of 1 000 W xenon lamp illumination, adding 0.12 mL/L hydrogen peroxide and reacting for 60 min, the decolorization ratio of MOF(Fe)/ACF for Reactive Black KN–B became 95.7%, 52.2% higher than that of the ACF. After five times reuse, the decolorization ratio of MOF(Fe)/ACF could still reach 86.0%.

Key words: metal-organic framework, activated carbon fiber, dye decolorization, photo catalysis, dyeing wastewater, wastewater treatment

中图分类号: 

  • X703.1

图1

ACF、MOF(Fe)和MOF(Fe)/ACF的红外光谱"

图2

ACF和MOF(Fe)/ACF的扫描电镜照片(×5 000)"

图3

ACF和MOF(Fe)/ACF的能谱图"

图4

ACF和MOF(Fe)/ACF的XRD谱图"

图5

黑暗条件下ACF 和MOF(Fe)/ACF的脱色率"

图6

黑暗条件下染液中加入双氧水时ACF和MOF(Fe)/ACF的脱色率"

图7

光照条件下染液中加入双氧水时ACF和MOF(Fe)/ACF脱色率"

图8

MOF(Fe)/ACF重复使用的脱色率"

图9

光照条件下不同捕捉剂对脱色率的影响"

[1] 李庆, 陈灵辉, 李丹, 等. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12):188-195.
LI Qing, CHEN Linghui, LI Dan, et al. Research progress in photocatalytic degradation of dyes using metal-organic frameworks[J]. Journal of Textile Research, 2021, 42(12): 188-195.
[2] WANG J Y, WANG R Z, WANG L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100(5): 893-901.
doi: 10.1016/j.applthermaleng.2016.02.100
[3] LIU L F, ZHANG P H, YANG F L. Adsorptive removal of 2,4-DCP from water by fresh or regenerated chitosan/ACF/TiO2 membrane[J]. Separation and Purification Technology, 2010, 70(3): 354-361.
doi: 10.1016/j.seppur.2009.10.022
[4] CHEN M X, BAO C Z, HU D W, et al. Facile and low-cost fabrication of ZnO/biochar nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue dye[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139(2): 319-332.
doi: 10.1016/j.jaap.2019.03.009
[5] CHEN H Y, LV K L, DU Y, et al. Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient As(V) removal[J]. Journal of Alloys and Compounds, 2016, 674: 399-405.
doi: 10.1016/j.jallcom.2016.03.024
[6] 邓杨, 石现兵, 王涛, 等. 负载MIL-53(Fe) 的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(3):58-63.
DENG Yang, SHI Xianbing, WANG Tao, et al. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe)[J]. Journal of Textile Research, 2022, 43(3): 58-63.
[7] HE Y Y, DONG W B, LI X P, et al. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation[J]. Journal of Colloid and Interface Science, 2020, 574(8): 364-376.
doi: 10.1016/j.jcis.2020.04.075
[8] LIU B B, WANG X Y, LIU H Q, et al. 2D MOF with electrochemical exfoliated graphene for nonenzymatic glucose sensing: central metal sites and oxidation potentials[J]. Analytica Chimica Acta, 2020, 1122: 9-19.
doi: 10.1016/j.aca.2020.04.075
[9] HUANG K, GUO S, WANG R Y, et al. Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes[J]. Chinese Journal of Catalysis, 2020, 41(11): 1754-1760.
doi: 10.1016/S1872-2067(20)63613-0
[10] 娄娅娅, 王静, 董燕超, 等. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(2):142-147.
LOU Yaya, WANG Jing, DONG Yanchao, et al. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material[J]. Journal of Textile Research, 2021, 42(2): 142-147.
[11] HAN Q, WANG Z M, CHEN X Y, et al. Facile synthesis of Fe-based MOFs (Fe-BTC) as efficient adsorbent for water purifications[J]. Chemical Research in Chinese Universities, 2019, 35(4):564-569.
doi: 10.1007/s40242-019-8415-z
[12] AHMAD M, CHEN S, YE F, et al. Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation[J]. Applied Catalysis B: Environmental, 2019, 245(10): 428-438.
doi: 10.1016/j.apcatb.2018.12.057
[13] 岳琳, 张迎, 徐东升, 等. MOF(Fe)材料用于光-芬顿催化降解酸性大红3R废水[J]. 现代化工, 2019, 39(9):119-123.
YUE Lin, ZHANG Ying, XU Dongsheng, et al. Degradation of acidic red 3R wastewater by a new photo-Fenton system using MOF(Fe) as catalyst[J]. Modern Chemical Industry, 2019, 39(9):119-123.
[14] 庄金亮, 刘湘粤, 张宇, 等. 室温水相制备MIL-100(Fe)纳米材料及其光降解有机染料性能研究[J]. 化工新型材料, 2019, 47(1):259-263.
ZHUANG Jinliang, LIU Xiangyue, ZHANG Yu, et al. Synthesis of MIL-100(Fe) nanoparticle at room temperature and its photocatalytic activity for organic dye[J]. New Chemical Materials, 2019, 47(1): 259-263.
[15] MOHAMMAD N M, ABDI J, OVEISI M, et al. Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling[J]. Materials Research Bulletin, 2018, 100: 357-366.
doi: 10.1016/j.materresbull.2017.12.033
[16] HASANZADEH M, SIMCHI A, SHAHRIYARIFAR H. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 405-414.
doi: 10.1016/j.jiec.2019.09.031
[17] SIBNATH K, ANUTOSH C. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture[J]. Chemical Engineering Journal, 2018, 334: 780-788.
doi: 10.1016/j.cej.2017.10.080
[18] 袁彬钦. 常温合成的MIL-100(Fe)的吸附性能和新型TED@Cu-BTC水稳定性增强机理[D]. 广州: 华南理工大学, 2019:30.
YUAN Binqin. Room temperature synthesis of MIL-100(Fe) and its adsorption performances and enhanced water stability of TED@Cu-BTC[D]. Guangzhou: South China University of Technology, 2019: 30.
[19] MOHAMMADIFARD Z, SABOORI R, MIRBAGHERI N S, et al. Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation[J]. Environmental Pollution, 2019, 251(8): 783-791.
doi: 10.1016/j.envpol.2019.04.143
[20] FAN X W, HU H X, QIN J Q, et al. Mechanism study on NO removal over the CQDs@MIL-100(Fe) composite photocatalyst[J]. Environmental Techno-logy & Innovation, 2021. DOI: org/10.1016/j.eti.2021.101809.
doi: org/10.1016/j.eti.2021.101809
[1] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[2] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[3] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[4] 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43.
[5] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[6] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[7] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[8] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[9] 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201.
[10] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[11] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[12] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
[13] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[14] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[15] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!