纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 70-76.doi: 10.13475/j.fzxb.20210404707

• 纤维材料 • 上一篇    下一篇

聚合物熔体微分静电纺电场对射流的影响及其物理模型

陈明军1,2, 李好义3(), 杨卫民3   

  1. 1.中国煤炭科工集团太原研究院有限公司, 山西 太原 030006
    2.煤矿采掘机械装备国家工程实验室,山西 太原 030006
    3.北京化工大学 机电工程学院, 北京 100029
  • 收稿日期:2021-04-16 修回日期:2022-02-18 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 李好义
  • 作者简介:陈明军(1987—),男,博士。主要研究方向为纳米纤维的制备及空气过滤。
  • 基金资助:
    中煤科工创新创业资金专项资金资助项目(2020-TD-ZD018);山西省自由探索基金项目(202103021223462)

Physical model and effects of electric field on jets in polymer melt differential electrospinning

CHEN Mingjun1,2, LI Haoyi3(), YANG Weimin3   

  1. 1. Taiyuan Research Institute Co., Ltd., China Coal Technology & Engineering Group, Taiyuan, Shanxi 030006, China
    2. National Engineering Laboratory for Coal Mining Equipment, Taiyuan, Shanxi 030006, China
    3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-04-16 Revised:2022-02-18 Published:2022-05-15 Online:2022-05-30
  • Contact: LI Haoyi

摘要:

为研究电场强度及接收装置材质对无针静电纺丝射流效率和射流分布均匀性的影响,在提出的熔体微分直线静电纺丝装置上,通过改变纺丝电压和接收装置材质,分析了喷头端最大电场强度和电离电荷对射流效率及均匀性的影响。结果表明:喷头端电场强度越大,射流效率越高,射流分布越均匀;当接收端的局部电压高于喷头端的电压时,电离离子宏观上表现出向喷头端运动,会抑制射流的形成;在高压收集端铺设电阻值为2.7×105 Ω的纸,可以实现电离电荷的二次均匀分布,消除局部离子流引起的射流缺失现象;在接收装置上铺设电阻值大于1.0×1011 Ω的聚对苯二甲酸乙二醇酯(PET)会增加纺丝回流的电阻,导致电荷在PET上聚集,反作用削弱喷头端的电场强度,引起射流效率的降低。

关键词: 无针静电纺丝, 高压静电纺丝, 电极材质, 电场强度, 电离电荷, 射流效率

Abstract:

In order to study the influence of electric field intensity and material of receiving device on the jet efficiency and jet distribution uniformity in needleless electrospinning, a linear slot melt differential electrospinning device was proposed. The effects of the maximum electric field intensity and ionization charge on the jet density and distribution uniformity were studied by changing the electrostatic voltage and material of receiving device. The results showed that the jets efficiency and uniformity increased with increasing the electric field intensity at the spinneret. When the local voltage at the receiving end is higher than that of nozzle end, the ionized ions showed macroscopically a movement towards the nozzle end, which would result in the loss of melt-jets, and even inhibition of the jet formation. Laying a paper with resistance of 2.7×105 Ω at the high-voltage collection can effectively redistribute the ionization charge in the spinning space uniformly, therefor eliminating the phenomenon of jet loss caused by local ion flow. Laying a sheet of polyethylene terephthalate (PET) with resistance greater than 1.0×1011 Ω at the high-voltage collection would increase the resistance of spinning circuit and result in the accumulation of charge on the PET. Therefore, the electric field strength at the nozzle end was weakened and jets efficiency decreased.

Key words: needleless electrospinning, high voltage electrospinning, electrode material, electric field intensity, ionized charge, jet efficiency

中图分类号: 

  • TS152

图1

直线狭缝静电纺设备"

表1

接收装置的材质性能"

接收板材料 厚度/mm 电阻/Ω 相对介电常数
Cu 15 0
Cu+Al 15+0.1 0
Cu+PA 15+0.1(80 g/m2)* 2.66×106 2.5
Cu+PET 15+10 >1.0×1011 3.8

图2

纺丝空间电场模拟模型"

图3

射流分布随电压增加的演变照片"

图4

纺丝电压对最大电场强度及射流间距的影响"

图5

不同接收材质下的射流分布照片"

图6

不同接收材质的射流间距"

图7

不同接收材质下电场强度及电流的情况"

图8

熔体微分静电纺空间电场的物理模型"

图9

接收丝线与接收板电场强度分布对比图"

图10

熔体爬坡示意图"

图11

纸张数量对射流间距和击穿电压的影响"

[1] 陈明军. 直线狭缝熔体微分静电纺丝纳米纤维及其空气过滤组件的研究[D]. 北京: 北京化工大学, 2020:1-4.
CHEN Mingjun. Untra-fine fibers fabricated from linear slot melt differential electrospinning and its air filtration components[D]. Beinjing: Beijing University of Chemical Technology, 2020:1-4.
[2] LIU Yong, DENG Rongjian, HAO Mingfeng, et al. Orthogonal design study on factors effecting on fibers diameter of melt electrospinning[J]. Polymer Engineering and Science, 2010, 50(10): 2074-2078.
doi: 10.1002/pen.21753
[3] DEITZEL J M, KLEINMEYER J D, HIRVONEN J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42(19): 8163-8170.
doi: 10.1016/S0032-3861(01)00336-6
[4] YAN Hao, LIU Luqi, ZHANG Zhong. Alignment of electrospun nanofibers using dielectric materials[J]. Applied Physics Letters, 2009, 95(14): 143114.
doi: 10.1063/1.3242378
[5] KIM Seonjeong, LEE Changkee, KIM Sun I. Effect of ionic salts on the processing of poly (2-acrylamido-2-methyl-1-propane sulfonic acid) nanofibers[J]. Journal of Applied Polymer Science, 2005, 96(4): 1388-1393.
doi: 10.1002/app.21567
[6] ZONG Xinghua, KIM Kwangsok, FANG Dufei, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43(16): 4403-4412.
doi: 10.1016/S0032-3861(02)00275-6
[7] ANGAMMANA Chitral J, JAYARAM Shesha H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1109-1117.
doi: 10.1109/TIA.2011.2127431
[8] WANG Hong, XU Yang, WEI Qufu. Preparation of bamboo-hat-shaped deposition of a poly (ethylene terephthalate) fiber web by melt-electrospinning[J]. Textile Research Journal, 2015, 85(17): 1838-1848.
doi: 10.1177/0040517515573414
[9] KIM Geumhyumg, CHO Youngsam, KIM Wandoo. Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J]. European Polymer Journal, 2006, 42(9): 2031-2038.
doi: 10.1016/j.eurpolymj.2006.01.026
[10] ZHENG Yuansheng, ZENG Yongchun. Electric field analysis of spinneret design for multihole electrospinning system[J]. Journal of Materials Science, 2014, 49(5): 1964-1972.
doi: 10.1007/s10853-013-7882-8
[11] FORWARD Keithm, RUTLEDGE Gregoryc. Free surface electrospinning from a wire electrode[J]. Chemical Engineering Journal, 2012, 183: 492-503.
doi: 10.1016/j.cej.2011.12.045
[12] JIANG Guojun, ZHANG Sai, QIN Xiaohong. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret[J]. Materials Letters, 2013, 106:56-58.
doi: 10.1016/j.matlet.2013.04.084
[13] WANG Xing, NIU Haitao, LIN Tong, et al. Needleless electrospinning of nanofibers with a conical wire coil[J]. Polymer Engineering & Science, 2009, 49(8): 1582-1586.
[14] LI Haoyi, CHEN Hongbo, ZHONG Xiangfeng, et al. Interjet distance in needleless melt differential electrospinning with umbellate nozzles[J]. Journal of Applied Polymer Science, 2014, 131(15):40515.
[15] LUKAS David, SARKAR Arimdam, POKORNY Paval. Self-organization of jets in electrospinning from free liquid surface: a generalized approach[J]. Journal of Applied Physics, 2008, 103(8):997-1003.
[16] CHEN Mingjun, ZHANG Youchen, CHEN Xiaoqing, et al. Polymer melt differential electrospinning from a linear slot spinneret[J]. Applied of Polymer Science, 137(31):48922.
doi: 10.1002/app.48922
[17] YAN Hao, LIU Luqi, ZHANG Zhong. Alignment of electrospun nanofibers using dielectric materials[J]. Applied Physics Letters, 2009, 95(14): 143114.
doi: 10.1063/1.3242378
[18] CHIDCHANOK Mit-uppatham, MANIT Nithitannkul, PITT Supaphol. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter[J]. Macromolecular Chemistry and Physics, 2010, 205(17):2327-2338.
doi: 10.1002/macp.200400225
[19] ZHAO Lin, ADAMIAK Kazimierz. EHD flow in air produced by electric corona discharge in pin-plate configuration[J]. Journal of Electrostatics, 2005, 63(3/4): 337-350.
doi: 10.1016/j.elstat.2004.06.003
[20] SAMATHAM Ravikant, KIM Kwang J. Electric current as a control variable in the electrospinning process[J]. Polymer Engineering & Science, 2006, 46(7): 954-959.
[1] 陈威亚 刘延波 王洋知 沈烨伟 郭岭岭. 多针头静电纺丝过程中电场强度与分布的有限元分析[J]. 纺织学报, 2014, 35(6): 1-0.
[2] 刘菁 王鑫. 影响静电纺丝电场强度的因素分析[J]. 纺织学报, 2013, 34(10): 6-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!