纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 116-123.doi: 10.13475/j.fzxb.20210505408

• 纺织工程 • 上一篇    下一篇

三维四向碳/碳预制件微孔板压实致密关键技术

梅宝龙1,2, 董九志1,2(), 杨涛1,2, 蒋秀明1,2, 任洪庆1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代化机电装备技术重点实验室, 天津 300387
  • 收稿日期:2021-05-24 修回日期:2022-01-18 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 董九志
  • 作者简介:梅宝龙(1988—),男,博士生。主要研究方向为复合材料预制件成型技术与复合材料力学。
  • 基金资助:
    天津市科技支撑重点计划项目(15ZSZDGX00840);天津市自然科学基金项目(18JCYBJC20200)

Key technology for compaction and densification of micro-porous plates made from 3-D four-directional carbon/carbon preforms

MEI Baolong1,2, DONG Jiuzhi1,2(), YANG Tao1,2, JIANG Xiuming1,2, REN Hongqing1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2021-05-24 Revised:2022-01-18 Published:2022-05-15 Online:2022-05-30
  • Contact: DONG Jiuzhi

摘要:

为解决手工编织三维四向碳/碳复合材料预制件层间致密不一致的问题,基于预制件成型技术,建立碳纤维铺放高度与纤维体积含量映射关系,设计等距密排微孔板并提出适用于微孔板的加工工艺;同时为保证预制件压实致密过程中纤维流动性好,采用纤维压缩理论,对等距密排微孔板结构进行优化以降低预制件孔隙率。基于位移-压力双闭环控制策略,研制数字化压实装置,实现预制件密度在线动态调控与无损压纱,保证层间密度一致。为验证压实致密关键技术可行性,进行等距密排微孔板压实实验并对预制件进行形貌观测,结果显示采用优化后等距密排微孔板压实的预制件均匀性更好,较优化前等距密排微孔板压实的预制件孔隙率降低50%。

关键词: 预制件, 压实致密, 等距密排微孔板, 数字化压实装置, 孔隙率

Abstract:

Aiming at the inconsistent density between layers of hand-woven 3-D four-directional carbon/carbon composite preforms, the mapping relationship between carbon fiber laying height and fiber volume content were established based on the prefabricated parts forming technology. Equal distance and density micro-porous plates were designed, and processing technique suitable for micro-porous plates was established to ensure uniform density of the preforms. In order to ensure good fiber fluidity during the compaction and densification process of the preforms, the fiber compression theory was applied and the optimization of the structure for equal-distance and density micro-porous plates was carried to reduce the porosity of the preform. Based on the control strategy of displacements-pressure double closed loop, a digital compaction device was developed for on-line dynamic control of the preform density and nondestructive compaction to ensure the uniform density between the preform layers. Compaction experiments of equal-distance and density micro-porous plates were carried out to verify the feasibility of the key technology of compaction and densification process and the preforms were examined with an industrial microscope. The results show that the uniformity of preforms compacted by the optimized equal-distance and density micro-porous plates is better, with the preform porosity reduced by 50% compared to the non-optimized preforms.

Key words: preform, compaction density, equal-distance and density micro-porous plates, digital compaction device, porosity

中图分类号: 

  • TS103.3

图1

三维四向碳/碳复合材料预制件成型工艺"

图2

等距密排微孔板压实模型"

图3

微孔板受力图"

表1

微孔板受力与位移"

受力点
位移/mm
压力/N
A B C D
11.0 16.2 16.5 15.9 16.0
10.8 21.6 22.0 21.8 22.2
10.6 27.9 28.4 28.8 28.2
10.4 36.0 35.8 35.4 35.4
10.2 40.6 41.4 40.9 41.0

图4

微孔直径模型"

图5

微孔板加工工艺模型"

图6

单元体模型"

图7

优化前后微孔板压实模型"

图8

优化前后微孔板"

图9

压实装置 注:1—伺服电动机; 2—丝杠-滑块;3—等距密排微孔板; 4—压力传感器。"

图10

双闭环控制原理"

表2

微孔板参数"

优化前微孔板参数 优化后微孔板参数
ϕd Δl Δt φd Δl Δt
1.5 0 0 1.5 0.8 1.2

图11

预制件显微形貌"

[1] 王玲玲, 师鼎, 张小会, 等. 不同增强结构碳/碳复合材料力学及抗烧蚀性能[J]. 炭素技术, 2017, 36(4):16-20.
WANG Lingling, SHI Ding, ZHANG Xiaohui, et al. Mechanical and ablative properties of different reinforced structure C/C composites[J]. Carbon Techniques, 2017, 36(4):16-20.
[2] 苏君明, 崔红, 苏哲安, 等. 轴棒法混编4D碳/碳复合材料喉衬研究[J]. 炭素, 2004(1):12-16.
SU Junming, CUI Hong, SU Zhean, et al. Research of 4D C/C composite material throat insert by mix weaved with carbon fibre and axial carbon rod[J]. Carbon, 2004(1):12-16.
[3] FARHAN S, WANG R, LI K. Directional thermophysical, ablative and compressive behavior of 3D carbon/carbon composites[J]. Ceramics International, 2015, 41(8):9763-9769.
doi: 10.1016/j.ceramint.2015.04.048
[4] 黄启忠, 谢志勇, 苏哲安, 等. 炭/炭复合材料的制备和研究现状[C]// 中国金属学会炭素材料分会2007年年会. 北京: 中国金属学会, 2007:51-63.
HUANG Qizhong, XIE Zhiyong, SU Zhean, et al. Preparation and research status of carbon/carbon composite materials[C]// 2007 Annual Meeting of Carbon Materials Branch of The Chinese Society of Metals. Beijing: The Chinese Society for Metals, 2007:51-63.
[5] 毕燕洪, 罗瑞盈, 章劲草. 碳/碳复合材料快速制备工艺研究进展[J]. 航空精密制造技术, 2008, 44(5):32-35.
BI Yanhong, LUO Ruiying, ZHANG Jincao. State of art of rapid fabrication technics of carbon/carbon composites[J]. Aviation Precision Manufacturing Technology, 2008, 44(5):32-35.
[6] 侯晓, 程文, 陈妮, 等. 轴炭棒法制备高性能碳/碳复合材料喉衬织物[J]. 新型炭材料, 2013, 28(5):355-362.
HOU Xiao, CHENG Wen, CHEN Ni, et al. Preparation of a high performance carbon/carbon composite throat insert woven with axial carbon rods[J]. New Carbon Materials, 2013, 28(5):355-362.
doi: 10.1016/S1872-5805(13)60088-8
[7] 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018(2):86-95.
SUN Le, WANG Cheng, LI Xiaofei, et al. Research progress on preforms of C/C composites[J]. Journal of Aeronautical Materials, 2018(2):86-95.
[8] 解惠贞, 傅利坤, 孙建涛, 等. 纤维分布对C/C复合材料烧蚀性能的影响[J]. 粉末冶金材料科学与工程, 2013, 18(1):102-106.
XIE Huizhen, FU Likun, SUN Jiantao, et al. Influence of carbon fibers distribution on ablative performance of C/C composite[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(1):102-106.
[9] 胡培利, 单忠德, 刘云志, 等. 复合材料构件预制体压实致密工艺研究[J]. 机械工程学报, 2019, 55(9):191-197.
HU Peili, SHAN Zhongde, LIU Yunzhi, et al. Compaction and densification process of composite component preforms[J]. Journal of Mechanical Engineering, 2019, 55(9):191-197.
[10] 杨彩云, 李嘉禄. 三维机织复合材料纤维体积含量计算方法[J]. 固体火箭技术, 2005, 28(3):224-227.
YANG Caiyun, LI Jialu. Calculation methods of 3D woven composites fiber volume fraction[J]. Journal of Solid Rocket Technology, 2005, 28(3):224-227.
[1] 檀江涛, 蒋高明, 高哲, 郑培晓. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(08): 185-193.
[2] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[3] 刘赛, 郑冬明, 潘行星, 刘贵, 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[4] 田伟 雷新 从明芳 祝成炎. 纺粘非织造布制备工艺与性能的关系[J]. 纺织学报, 2015, 36(11): 68-71.
[5] 梁翠芳 陈霞 傅婷 卜佳仙 万贤福 汪军. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5): 49-0.
[6] 周明, 王鸿博, 王银利, 高卫东. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1): 20-23.
[7] 郭云飞.;李嘉禄. . 三维编织预制件厚度的超声波在线测量[J]. 纺织学报, 2008, 29(5): 55-58.
[8] 鲍韡韡;王曙东;张幼珠;尹桂波;吴佳林;施德兵;董智慧;符伟国. 静电纺再生丝素/明胶纳米纤维的结构与性能[J]. 纺织学报, 2008, 29(3): 1-4.
[9] 付海明;钟珂. 计算机优化选择纤维滤料结构参数[J]. 纺织学报, 2008, 29(12): 112-116.
[10] 李红霞;刘丽;黄故. 亚麻/聚丙烯针织结构预制件及其力学性能[J]. 纺织学报, 2008, 29(10): 52-55.
[11] 姜海珍;李亮玉;范芳蕾;周鑫. 三维预制件缝合机器人视觉跟踪系统[J]. 纺织学报, 2008, 29(10): 113-116.
[12] 焦亚男;李嘉禄;付景韫. 变截面三维编织预制件的增减纱机制[J]. 纺织学报, 2007, 28(1): 44-47.
[13] 李毓陵;丁辛;胡良剑. 异形截面预制件编织的置换分析[J]. 纺织学报, 2007, 28(1): 51-55.
[14] 杜兆芳;郭世俊. 黄麻/苎麻草坪培植基的透气透湿性分析[J]. 纺织学报, 2005, 26(6): 57-58.
[15] 焦亚男;李嘉禄;董孚允. 针织复合材料的研究进展[J]. 纺织学报, 2004, 25(04): 125-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!