纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 66-71.doi: 10.13475/j.fzxb.20210907201

• 纺织工程 • 上一篇    下一篇

非可吸收倒刺缝合线握持力及其影响因素

成悦1, 左涵1, 安琪1, 李大伟1,2, 张伟1,2, 付译鋆1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2021-09-22 修回日期:2023-01-17 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 付译鋆
  • 作者简介:成悦(1997—),女,硕士生。主要研究方向为生物医用材料设计开发。
  • 基金资助:
    南通市科技计划项目(MS22022068);江苏高校“青蓝工程”资助项目(苏教师函[2020]10号)

Holding force of non-absorbable barbed sutures and its influencing factors

CHENG Yue1, ZUO Han1, AN Qi1, LI Dawei1,2, ZHANG Wei1,2, FU Yijun1,2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
  • Received:2021-09-22 Revised:2023-01-17 Published:2023-06-15 Online:2023-07-20
  • Contact: FU Yijun

摘要:

握持力是评价非可吸收倒刺缝合线临床应用性能的一个重要指标,为探究影响非可吸收倒刺缝合线握持力的因素,选择5种不同针型结构的实验室自制倒刺缝合线和1种商用倒刺缝合线,在硅胶仿真模拟皮肤组织上进行弯曲模型握持力测试,并利用显微镜观察握持力测试前后不同试样的微观形貌。实验结果显示:缝合线线材的外括角、剪切深度、剪切距离等结构参数直接影响倒刺缝合线的握持力;缝合针的形状、弧形、弦长和曲率等结构参数对倒刺缝合线的握持力也有一定影响,相同条件下,圆形针比三角形针的握持力大,缝合针的弧形和弦长越大、曲率越小,倒刺缝合线的握持力越大。

关键词: 倒刺缝合线, 非可吸收, 握持力, 拉伸性能, 微观形貌

Abstract:

Objective The holding force of non-absorbable barbed sutures is a very important index, but its influencing factors have not been systematically studied. Therefore, this work was carried out to explore the influence of needle shape and linear structure on the holding force of non-absorbable barbed sutures.
Method Six kinds of barbed sutures with different needle types and linear structures were prepared and tested via bending model on silica gel artificial skin tissue. The micromorphology of different specimens before and after the holding force test was observed by microscope. Besides, chemical composition and tensile performances of different specimens were tested and analyzed.
Results After the holding force test, silica gel residue can be observed at the roots of the two barbed sutures (Fig. 4), indicating that the barb has a certain ability to hold the silica gel artificial skin tissue. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the chemical structures of sutures A1 and B were both non-absorbable polyamide sutures (Fig. 5). Tensile performances of A1 and B sutures were compared, and there is no significant difference in strength between the two, but suture B showed a better breaking elongation (19.42±2.67)% and flexibility (Tab. 3). Finally, the holding force of the six barbed sutures was tested via bending model on silica gel artificial skin tissue and the influence of barb and needle structure on holding force was analyzed (Fig. 7). The external expansion angle of suture A1 and B were (15.13±2.08)° and (16.32±1.01)°, the cut depth of suture A1 and B were (0.091±0.018) mm and (0.114±0.041) mm. The two parameters of suture 6 were greater than that of suture 1, which is beneficial to improve the holding area of barb to surrounding artificial skin tissue. In addition, the cut distance of suture B was (0.865±0.016) mm, less than that of suture A1, which was (0.982±0.018) mm, indicating a higher barb density for suture B. The influence of needle structure on holding force was further divided into needle shape, chord length, radian and curvature. Results show that the holding force of sutures A1 to A5 were (3.86±0.38) N, (3.95±0.50) N, (5.71±0.62) N, (8.00±1.20) N and (4.56±0.34) N, respectively. Under the same conditions, the holding force of round needle barbed suture A2 and A4 was higher than that of triangular needle barbed suture A1 and A3, respectively. The chord length of suture A3 and A4 are longer than that of suture A1 and A2. The larger the chord length of the suture needle, the greater the holding force of the barbed suture. The radian of needle in suture A5 is smaller than that in suture A3, the holding force of barbed suture produced by small needle was lower than that produced by large radian needle. The curvature of needle in suture A5 is smaller than that in suture A1, the smaller the curvature of the needle, the greater the holding force generated by the corresponding barbed suture.
Conclusion Holding force of six kinds of non-absorbable barbed sutures were tested via bending model on silica gel artificial skin tissue. Under the same conditions, appropriately increasing the external expansion angle or cut depth, reducing the cut distance of the suture can improve the holding force of barbed sutures. The specification and structure of needle also have a certain effect on the holding force of barbed sutures. Under the same conditions, the holding force of round needle barbed suture is greater than that of triangular needle barbed suture. With the same radian, the larger the chord length of needle, the greater the holding force of barbed suture. With the same curvature, the larger the radian length, that is, the longer the chord length and needle length, the higher the holding force of barbed suture. With the same needle length, appropriate reduction of the curvature of needle can increase the holding force of barbed suture.

Key words: barbed suture, non-absorbable, grip force, tensile property, microstructure

中图分类号: 

  • TS101.4

表1

6种缝合线的针型规格结构"

编号 针的
形状
弧形 直径/
mm
弦长/
mm
针长/
mm
A1 三角形 1/2 0.9 17 26
A2 圆形 1/2 0.9 17 26
A3 三角形 1/2 0.9 23 36
A4 圆形 1/2 0.9 23 36
A5 三角形 3/8 0.9 20 26
B 三角形 1/2 0.9 17 26

图1

6种缝合针实物图"

图2

非可吸收缝合线的线型结构示意图"

图3

弯曲模型握持力测试"

图4

2种缝合线的微观形貌 a1为握持力测试前数码显微镜形貌; b1为握持力测试后偏光显微镜形貌。"

表2

2种缝合线的线型结构"

编号 直径D/mm 剪切角度θ/(°) 外括角θ'/(°) 剪切深度h/mm 剪切距离d/mm
缝合线A1 0.486±0.005 166.40±3.42 15.13±2.08 0.091±0.018 0.982±0.018
缝合线B 0.487±0.005 158.16±2.20 16.32±1.01 0.114±0.041 0.865±0.016

图5

2种缝合线的红外光谱图"

图6

2种缝合线的典型拉伸曲线"

表3

2种缝合线的拉伸数据"

编号 断裂强力/N 断裂伸长率/% 初始模量/(N·mm-1)
缝合线A1 22.40±0.85 15.38±2.37 1.32±0.20
缝合线B 23.53±4.92 19.42±2.67 0.77±0.07

图7

6种试样的握持力和典型握持曲线"

[1] DENNIS C, SETHU S, NAYAK S, et al. Suture materials: current and emerging trends[J]. Journal of Biomedical Materials Research Part A, 2016, 104(6): 1544-1559.
doi: 10.1002/jbm.a.v104.6
[2] DENG X, QASIM M, ALI A. Engineering and polymeric composition of drug-eluting suture: a review[J]. Journal of Biomedical Materials Research Part A, 2021, 109(10): 2065-2081.
doi: 10.1002/jbm.a.37194 pmid: 33830631
[3] MMD Marion. Suture choice and other methods of skin closure[J]. Surgical Clinics of North America, 2009, 89: 627-641.
doi: 10.1016/j.suc.2009.03.001
[4] NIEDERSTATTER I M, SCHIEFER J L, FUCHS P C. Surgical strategies to promote cutaneous healing[J]. Medical Sciences, 2021, 16(6): 2076-3271.
[5] 苏梦茹, 邹婷, 陈颀超, 等. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(5): 178-184, 192.
SU Mengru, ZOU Ting, CHEN Qichao, et al. Research progress of medical barbed sutures[J]. Journal of Textile Research, 2021, 42(5): 178-184, 192.
[6] 王旭晨, 吴沁婷, 郑兆柱, 等. 医用缝合线的研究进展[J]. 安徽工程大学学报, 2020, 35(5): 1-11.
WANG Xuchen, WU Qinting, ZHENG Zhaozhu, et al. Advances in medical sutures[J]. Journal of Anhui Polytechnic University, 2020, 35(5): 1-11.
[7] SHKOOR M, RIAHI A, FATUNSIN O, et al. The role of barbed sutures in wound closure following knee and hip arthroplasty: a review[J]. J Knee Surg, 2018, 31(9): 858-865.
doi: 10.1055/s-0037-1615812 pmid: 29294498
[8] PILLAI C K S, SHARMA C P. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance[J]. Journal of Biomaterials Applications, 2010, 25(4): 291-366.
doi: 10.1177/0885328210384890 pmid: 20971780
[9] XU B, XU B, WANG L, et al. Absorbable versus nonabsorbable sutures for skin closure: a meta-analysis of randomized controlled trials[J]. Annals of Plastic Surgery, 2016, 76(5): 598.
doi: 10.1097/SAP.0000000000000418 pmid: 25643187
[10] LI P, ZHANG W, WANG Y, et al. Barbed suture versus traditional suture in primary total knee arthroplasty: a systematic review and meta-analysis of randomized controlled studies[J]. Medicine, 2020, 99(21): 1-6.
[11] MORAN M E, MARSH C, PERROTTI M. Bidirectional-barbed sutured knotless running anastomosis v classic van velthoven suturing in a model system[J]. Journal of endourology, 2007, 21(10): 1175-1178.
pmid: 17949320
[12] 何丽伟. 自锁紧式聚对二氧环己酮(PPDO)缝合线的制备及性能研究[D]. 上海: 东华大学, 2013:1-46.
HE Liwei. PPDO)Preparation and properties of poly(p-dioxanone) (barbed sutures[D]. Shanghai: Donghua University, 2013:1-46.
[13] JEFFREY Z, KRISTEN G, JACK T, et al. An in vivo comparison of barbed suture devices and conventional monofilament sutures for cosmetic skin closure: biomechanical wound strength and histology[J]. Aesthetic Surgery Journal, 2011, 232(2): 232-240.
[14] LIU D, ZHENG Q, LU S, et al. A new method to prepare low melting point polyamide-6 and study crystallization behavior of polyamide-6/calcium chloride complex by rheological method[J]. Journal of Applied Polymer Science, 2015, 132(8): 41513.
[15] OGUNSONA E O, MISRA M, MOHANTY A K. Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers[J]. Journal of Applied Polymer Science, 2016.DOI:10.1002/app.44221.
doi: 10.1002/app.44221
[1] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[2] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[3] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[4] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[5] 肖渊, 尹博, 李岚馨, 刘欢欢. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019, 40(05): 78-83.
[6] 王心淼, 陈利, 张典堂, 陈冬. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(02): 45-52.
[7] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[8] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[9] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[10] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[11] 房家惠 于伟东. 阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能[J]. 纺织学报, 2017, 38(06): 28-32.
[12] 郭囊括 李丽辉 代方银 陈杨 敬凌霄. 柔性多轴向经编聚氨酯涂层织物的拉伸性能[J]. 纺织学报, 2016, 37(11): 59-063.
[13] 刘东奇 王喆 王翔 尹翠玉 张宇峰. 甲醇蛋白改性粘胶纤维的结构与性能[J]. 纺织学报, 2016, 37(09): 12-15.
[14] 吴波伟 张毅 黄帅 张卢娟 张孟洋. 拼纱根数对空气层组织织物拉伸性能的影响[J]. 纺织学报, 2016, 37(05): 47-50.
[15] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!