纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 103-109.doi: 10.13475/j.fzxb.20220502101

• 纺织工程 • 上一篇    下一篇

基于平织机的管状三维机织物设计及其矩阵模型

王旭1,2(), 闵尔君1, 李少聪1, 张文强3, 彭旭光3   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽工程大学 纺织科技公共服务平台,安徽 芜湖 241000
    3.滁州霞客无染彩色纺有限公司, 安徽 滁州 239000
  • 收稿日期:2022-05-09 修回日期:2022-09-30 出版日期:2023-08-15 发布日期:2023-09-21
  • 作者简介:王旭(1973—),男,副教授,博士。主要研究方向为纺织CAD。E-mail:314094186@qq.com
  • 基金资助:
    安徽工程大学企业委托横向项目(HX-2021-11-003);安徽工程大学企业委托横向项目(HX-2022-05-011)

Matrix model and design of 3-D tubular woven fabrics with normal weave loom

WANG Xu1,2(), MIN Erjun1, LI Shaocong1, ZHANG Wenqiang3, PENG Xuguang3   

  1. 1. College of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Science and Technology Public Service Platform for Textile industry, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. Chuzhou Xiake Non-dyeing Color Spinning Company Limited, Chuzhou, Anhui 239000, China
  • Received:2022-05-09 Revised:2022-09-30 Published:2023-08-15 Online:2023-09-21

摘要:

为优化管状三维机织物的设计,以三维机织物为管壁,并运用管状组织的构造方法,提出基于平织机的该类织物组织的设计方法和矩阵模型。首先以三维机织物为管壁得到表组织图,通过“底片翻转”法得到里组织图,按照分层织制的方法确定管状三维机织物组织图。通过MatLab函数对表组织矩阵元素置换及矩阵调序以获取里组织矩阵,并运用Kronecker积运算实现表、里组织矩阵按比例相互嵌入及表经提升点元素的赋值,从而得到管状三维组织矩阵。研究结果表明,提出的组织图设计方法及其矩阵模型可提高该类组织的设计效率。

关键词: 管状三维机织物, 织物组织图, 交织规律, 组织矩阵, Kronecker积

Abstract:

Objective Tubular composites are widely used in petrochemical, construction, aerospace and other fields. The traditional processing method is winding fiber or fabric and curing after resin impregnation. Because the interlayer is only bonded by resin, it is easy to cause delamination. If the tube wall is made of three-dimensional (3-D) woven fabric, the material's ability to resist delamination would be enhanced. In order to improve the design efficiency based on normal looms, a design method and matrix model of 3-D tubular woven fabric are proposed on the basis of combining the weaving rules of tubular and 3-D woven fabrics.

Method The weaving method of 3-D tubular woven fabric is "flattening-weaving-restoring". First, the weaving process takes the fabric as a two-layer 3-D woven fabriclinked at both selvedges, and then opened up to form a tubular section after removal from the loom. The weave diagram is divided into three steps. Firstly, the face weave diagram is obtained by selecting 3-D woven fabrics such as orthogonal, angle-interlocking and stitched multi-layer as the tube wall. Secondly, the back weave diagram is obtained by method called "negative and flip". Finally, according to the method of layered weaving, the weave diagram of 3-D tubular woven fabric is determined.

Results To verify the feasibility of the proposed method, a design example on 3-D tubular woven fabric based on weft through-thickness type orthogonal weave is given (Fig. 3). Firstly, the arrangement ratio of yarn is determine, for example, face warp∶back warp=1∶1, face weft∶back weft=1∶1, then number of warp and weft in a unit of 3-D tubular woven fabric Rgj=12 and Rgw=12. Secondly, the face weave (Fig. 3(a)) is entered at the intersection of odd columns and odd rows and the back weave(Fig. 3(b)) is input at the intersection of even columns and even row. Finally, according to the method of layered weaving, the intersection of the odd columns and even rows is indicated by "⚪" (Fig. 3(c)). The example shows that the proposed method is feasible. Other examples, 3-D tubular woven fabrics using warp through-thickness type angle-interlock weave (Fig. 4) and stitched multilayer type weave (Fig. 5) can both prove the effectiveness of the proposed method

In order to speed up the design efficiency, a matrix model of 3-D tubular woven fabric is proposed. The elements "1" and "3" represent the floating point of warp and weft of face and back weave, element "0" represents the floating point of warp and weft of face and back weave, and element "5" represents the lifting point of face warp when weaving back weft. Replace the elements of the face weave matrix and adjust the order of the columns of the matrix through the MatLab function to obtain the back weave matrix, then the Kronecker product operation is used to realize the proportional embedding of the face weave matrix in the back weave matrix and the assignment of the lifting point elements in the face warp, so as to obtain the matrix of 3-D tubular woven fabric.

In order to prove the effectiveness of the proposed matrix model, the following example is given (Fig. 6). Firstly, matrix B (face weave) with 6 rows and 6 columns. The element "0" is replaced by "3" through the find function of the MatLab program, and then the element "1" is replaced by "0" to complete the "negative" effect. Secondly,the fliplr function of the MatLab program is used to realize the left and right order adjustment of the matrix columns to complete the "flip" effect, and the matrix L (back weave) of 6 rows and 6 columns can be obtained. Thirdly, to generate a matrix C with 6 rows and 6 columns, to set elements are all "5", then matrix K1, K2, K3. Finally, according to Equation (1), through the Kronecker product operation of the matrix, the matrix W of 3-D tubular woven fabric can be obtained.

According to the plotting functions of the MatLab program, different matrix elements print different symbols, such as the elements "1", "3", "5", and "0" are printed "■", "×", "⚪", "□" respectively, which can realize the automatic drawing of the weave diagram.

Conclusion The design method on weave diagram of 3-D tubular fabric is proposed. Firstly, the 3-D woven fabric is selected as the face weave. Secondly, the back weave is obtained according to the "negative and flip" method. Finally, according to the layered weaving method, the weave diagram of 3-D tubular woven fabric can be constructed. The matrix model of 3-D tubular woven fabric weave is established, which uses different matrix elements to represent the floating point of warp and weft of face and back weave, lifting point of face warp when weaving back weft. Matlab function is used to realize the matrix generation of 3-D tubular woven fabric, that is, through element replacement, sequence adjustment of matrix to realize "negative and flip", matrix Kronecker product operation, and automatic drawing of weave diagram.

Key words: 3-D tubular woven fabric, weave diagram, interlacing rule, weave matrix, Kronecker product

中图分类号: 

  • TB332

图1

纬纱贯穿型正交组织管状三维机织物示意图"

图2

纬纱贯穿型正交组织示意图"

图3

纬纱贯穿型正交组织管状三维机织物组织图"

图4

经纱贯穿型角联锁管状三维机织物组织图"

图5

接结多层型管状三维机织物组织图"

图6

管状三维机织物矩阵示意图"

图7

接结双层型管状三维机织物组织图"

[1] 朱黎明, 吕丽华. 三维管状复合材料的研究与发展[J]. 产业用纺织品, 2020, 38(10):6-10, 54.
ZHU Liming, LÜ Lihua. Research and development of 3D tubular composites[J]. Technical Textiles, 2020, 38(10):6-10, 54.
[2] 周申华, 单鸿波, 孙志宏, 等. 立体管状织物的三维圆织法成型[J]. 纺织学报, 2011, 32(7):44-48.
ZHOU Shenhua, SHAN Hongbo, SUN Zhihong, et al. Circular weaving method for 3D tubular fabric[J]. Journal of Textile Research, 2011, 32(7):44-48.
[3] 孙志宏, 陈阳, 周申华. 圆织三维管状碳纤维复合材料弹性性能预测[J]. 纺织学报, 2014, 35(9):56-61.
SUN Zhihong, CHEN Yang, ZHOU Shenhua. Prediction of elasticity of circular woven 3D tubular carbon fiber composies[J]. Journal of Textile Research, 2014, 35(9):56-61.
[4] 冉丹, 刘家强, 周申华, 等. 管状三维机织物的交织方法分析[J]. 东华大学学报(自然科学版), 2012, 38(4):386-389, 434.
RAN Dan, LIU Jiaqiang, ZHOU Shenhua, et al. Analysis on weaving methods of 3D tubular woven fabric[J]. Journal of Donghua University(Natural Science), 2012, 38(4):386-389, 434.
[5] 吕丽华, 吕婷婷, 王晶晶. 异形三维圆管状机织复合材料的压缩性能分析[J]. 棉纺织技术, 2020, 48(11):1-4.
LÜ Lihua, LÜ Tingting, WANG Jingjing. Analyses on the compression property of profiled three-dimensional tubular woven composite material[J]. Cotton Textile Technology, 2020, 48(11):1-4.
[6] ZHU Lingming, LÜ Lihua, WANG Ying, et al. Axial-compression performance and finite element analysis of a tubular three-dimensional-woven composite from a meso-structural approach[J]. Thin-Walled Structures, 2020, 157:1-9.
[7] 王黎黎, 徐安长. 芳纶长丝三维管状织物设计[J]. 纺织科技进展, 2016(10):19-21.
WANG Lili, XU Anchang. Design of aramid filament three dimensional tubular fabric[J]. Progress in Textile Science and Technology, 2016(10):19-21.
[8] 王黎黎, 徐安长, 张尚勇. 三维管状复合材料的拉伸性能研究[J]. 武汉纺织大学学报, 2017, 30(3):12-16.
WANG Lili, XU Anchang, ZHANG Shangyong. Study on mechanical properties of three-dimensional tubular composites[J]. Journal of Wuhan Textile University, 2017, 30(3):12-16.
[9] 朱红, 韩慧敏. 三维孔管状织物结构件的设计与研制[J]. 东华大学学报(自然科学版), 2010, 36(6):633-638, 654.
ZHU Hong, HAN Huiming. Design and investigations of three-dimensional multi-holesinpattern structure[J]. Journal of Donghua University(Natural Science), 2010, 36(6):633-638, 654.
[10] 黄晓梅. 管状三维织物的组织结构与织造工艺[J]. 纺织学报, 2002(4):51-52, 3.
HUANG Xiaomei. The texture design and weaving of tubular 3D fabric[J]. Journal of Textile Research, 2002(4):51-52, 3.
[11] 郭兴峰. 三维机织物[M]. 北京: 中国纺织出版社, 2015:9.
GUO Xingfeng. Three dimensional woven[M]. Beijing: China Textile & Apparel Press, 2015:9.
[12] CHEN X, POTIYARAJ P. CAD/CAM of orthogonal and angle-interlock woven structures for industrial applications[J]. Textile Research Journal, 1999, 69(9):648-655.
doi: 10.1177/004051759906900905
[13] CHEN X, KNOX R T, MCKENNA D F, et al. Mather. Automatic generation of weaves for the CAM of 2D and 3D woven textile structures[J]. The Journal of The Textile Institute, 1996, 87(2):356-370.
doi: 10.1080/00405009608659088
[14] 闵尔君, 宋路平, 芮章俊, 等. 管状三维复合材料增强体结构设计研究[J]. 武汉纺织大学学报, 2022, 35(2):8-11.
MIN Erjun, SONG Luping, RUI Zhangjun, et al. Design of reinforced structure on 3D tubular compo-sites[J]. Journal of Wuhan Textile University, 2022, 35(2):8-11.
[15] 黄晓梅. 几种三维管状预成形件的设计与织造[J]. 棉纺织技术, 2002(12):44-46.
HUANG Xiaomei. Design and weaving of several three-dimensional tubular preforms[J]. Cotton Textile Technology, 2002(12):44-46.
[16] 王旭, 杜增锋, 刘新华. 复合材料增强体三维结构的参数化设计[J]. 材料科学与工程学报, 2020, 38(5):831-834.
WANG Xu, DU Zengfeng, LIU Xinhuau. Parametric design of 3D reinforcement structure in composite material[J]. Journal of Materials Science and Engineering, 2020, 38(5):831-834.
[17] 王旭, 杜增锋, 倪庆清, 等. 正则角联锁组织的矩阵模型及其生成算法[J], 纺织学报, 2019, 40(5):47-52.
WANG Xu, DU Zengfeng, NI Qingqing, et al. Matrix model and its generation algorithm of regular angle-interlock weave[J]. Journal of Textile Research, 2019, 40(5):47-52.
[18] 王旭, 袁惠芬, 刘新华. 应用Kronecker积的表里换层双层组织矩阵设计[J]. 纺织学报, 2015, 36(5):34-38.
WANG Xu, YUAN Huifen, LIU Xinhua. Matrix design for multi-layer weaves by using of Kronecker pro-duct[J]. Journal of Textile Research, 2015, 36(5):34-38.
[1] 王旭, 杜增锋, 王翠娥, 倪庆清, 刘新华. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019, 40(11): 57-63.
[2] 王旭, 杜增锋, 倪庆清, 刘新华. 正则角联锁组织的矩阵模型及其生成算法[J]. 纺织学报, 2019, 40(05): 47-52.
[3] 王旭 袁惠芬 刘新华. 应用Kronecker积的表里换层双层组织矩阵设计[J]. 纺织学报, 2015, 36(05): 34-38.
[4] 骆晓蕾 敖利民 王欢欢 吕小娇 熊梦依 汪宴梅. 织物组织的数字化表达及信息织物设计[J]. 纺织学报, 2015, 36(04): 44-49.
[5] 谢宝珠;张 聿;金 耀;杨婷婷. 基于组织矩阵移位迭代方法的织物组织设计[J]. 纺织学报, 2010, 31(6): 37-42.
[6] 袁惠芬;王旭. 基于特征子阵匹配的织物组织分析[J]. 纺织学报, 2009, 30(9): 45-48.
[7] 袁惠芬;王旭. 基于MatLab的管状织物组织设计[J]. 纺织学报, 2008, 29(12): 34-38.
[8] 施国生;梁道雷. 多臂织物组织矩阵的自动设计[J]. 纺织学报, 2002, 23(06): 60-60.
[9] 施国生;沈干;胡觉亮. 多臂织物大组织矩阵的设计方法[J]. 纺织学报, 2000, 21(06): 30-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!