纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 65-73.doi: 10.13475/j.fzxb.20220903701

• 纤维材料 • 上一篇    下一篇

商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素

谢艳霞1,2, 张唯强1, 徐亚宁1, 赵书涵1, 尹雯萱1, 张文强3, 韩旭1,2()   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽省纺织工程技术研究中心, 安徽 芜湖 241000
    3.滁州霞客无染彩色纺有限公司, 安徽 滁州 239000
  • 收稿日期:2022-09-15 修回日期:2023-03-29 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 韩旭(1989—),男,讲师,博士。主要研究方向为超细纤维的功能化改性。E-mail:hanxu@ahpu.edu.cn
  • 作者简介:谢艳霞(1971—),女,正高级工程师,博士。主要研究方向为功能性复合材料及纺织品的基础研究与应用。
  • 基金资助:
    “纺织面料”安徽省高校重点实验室/安徽省纺织工程技术研究中心联合开放基金项目(2018AKLTF13);安徽省科学技术厅重点研究与开发计划面上攻关项目(202004a05020053);芜湖市科学技术局科技成果转化项目(2022cg18)

Migration properties of commercial polyethylene terephthalate staple fiber oligomers and influencing factors thereof

XIE Yanxia1,2, ZHANG Weiqiang1, XU Yaning1, ZHAO Shuhan1, YIN Wenxuan1, ZHANG Wenqiang3, HAN Xu1,2()   

  1. 1. School of Textiles and Garments, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Research Center of Textile Engineering Technology of Anhui Province, Wuhu, Anhui 241000, China
    3. Chuzhou Seeker Solution Dyed Co., Ltd., Chuzhou, Anhui 239000, China
  • Received:2022-09-15 Revised:2023-03-29 Published:2024-01-15 Online:2024-03-14

摘要:

为分析商用聚对苯二甲酸乙二醇酯(PET)短纤维低聚物析出的主要原因,筛选低聚物脱落性能差别显著的2种短纤维进行溶剂萃取和热诱导,制得萃取纤维、热诱导纤维和低聚物,基于其外观形貌、热性能和结晶结构等测试,分析低聚物结构组分及其析出规律与原理。结果表明:2种萃取低聚物的主要成分均为环状三聚体(C3)和少量PET微晶聚合物,表面低聚物较多的PET短纤维(HM)含有可能是环状四聚体(C4)的高熔点低聚物;HM低聚物的C3和PET微晶的熔点相对较高,分别为173.5和146.7 ℃;C3在短纤维、萃取低聚物和高温过程分别主要以A、B和A/B混合型晶型存在,HM低聚物的A和B型C3的熔点相对较高,分别为173.5和314.5 ℃;2种纤维的低聚物含量相近,与表面低聚物较少的PET短纤维(LM)相比,HM短纤维的结晶度相对偏低11.25%,其A型C3含量相对偏少,熔点偏高1.7 ℃,B型C3的熔点偏高1.9 ℃,且含二甘醇残基的环聚物含量相对略高;对2种纤维在140~200 ℃进行热空气热诱导1 h发现,在140、160和180 ℃时,低聚物析出量均随温度升高而增加,但HM短纤维析出明显较少,在200 ℃时低聚物析出量均快速增多,晶型和数量均趋于一致;热诱导作用是影响低聚物析出的主要因素,纤维后加工的热处理条件、纤维结晶度和聚合过程中乙二醇/对苯二甲酸的质量比可能是析出的重要因素。

关键词: 聚对苯二甲酸乙二醇酯短纤维, 低聚物析出, 热诱导, 环聚物, 环状三聚体

Abstract:

Objective With the development of fine denier and high-speed spinning technology, the phenomenon of oligomers migration and powders shedding from the surface of polyethylene terephthalate(PET) fiber became more and more serious, which would greatly impact on the production efficiency, quality and workers' health during the spinning and dyeing processes. It is necessary to solve the problem by exploring the migration mechanism and the structure-activity relationships of oligomers during staple fiber processing, and thus adjust the production conditions to prevent the migration.

Method Two types of commercial PET staple fibers with obvious difference in white powder shedding properties were extracted and thermal induced to obtain extractive fibers, thermally induced fibers and oligomers, respectively. The thermal induction temperature was determined on the practical process of the post-spinning process. Scanning electron microscopy, differential scanning calorimetry(DSC), ultraviolet-visible spectrophotometry and X-ray diffractomety (XRD) techniques were carried out to analyze the structural constituent, precipitate law and precipitate mechanism of the oligomers.

Results The main components of the oligomers derived from these two fibers were both cyclic trimers (C3) and a small amount of PET microcrystalline polymers (PET microlite). The fibers which shed more powders (HM) detected few oligomers with high melting point should be assigned to the C4 polymers. The C3 oligomers and PET microlites were of relatively high melting temperature at 173.5 and 146.7 ℃, respectively, and the melting temperature for C4 was around 274.6 ℃. While the C3 and PET microlites for the fibers which shed less powders (LM) have low melting temperature around 171.8 ℃ and 139.0 ℃, respectively. The C3 in PET staple fiber, solvent extraction substance and pyroprocess existed as A type, B type and A/B mischcrystal type, respectively. The melting temperature of A type C3 and B type C3 from HM polymers were 173.5 and 314.5℃ while the A type C3 and B type C3 from HM polymers were relatively lower, at 171.8 and 312.6 ℃, respectively. The HM and LM fibers showed similar oligomers mass ratio as 1.37% and 1.42%. Compared with the no shedding PET fiber, the shedding powder fibers contained significantly higher amount of oligomers and the crystallinity was 57.73% (11.25% lower). Moreover, the HM fibers maintained relatively small amount of A type trimer whose melting point was 1.7 ℃ higher, and B type trimer was about 1.9 ℃ higher, and relatively higher amount of cyclic polymers containing diethylene glycol residues. It is found that when the two fibers were subjected to thermal induction in hot air from 140 to 200 ℃ for 1h, the oligomers migrated from the two of fibers possesses point-like crysta at 140, 160 and 180 ℃, and the amount of oligomers increased with the rise of temperature, on the other hand, the low powder shedding fibers migrated less oligomers. When the induction temperature reached 200 ℃, the oligomers migrated from the surface of these two fibers were mainly multi-sided crystal type, the amount of precipitation increased rapidly compared with that at 140-180 ℃, and the crystal type and quantity tended to be the same quantity.

Conclusion The powders shedding phenomenon during staple fiber processing has no corresponding relationship with the mass ratio of total oligomers, however, it holds a positive relationship with the quantity of oligomers migrated on the fiber surface, and thermal induction is an important factor affecting the migration of PET staple fiber oligomers. Fibers heat treatment process in post-processing, the crystallinity of the fibers, and the mass ratio of ethylene glycol to terephthalic acid during polymerization may be the influencing factors affecting the powder shedding properties of oligomers. The temperature during fibers post-processing, cooling craft and the mass ratio of ethylene glycol in polymerization could be effective methods to prevent fibers from shedding powders.

Key words: polyethylene terephthalate staple fiber, oligomer migration, thermal induction, cyclic oligomer, cyclic trimer

中图分类号: 

  • TS102.1

图1

萃取前、后短纤维的外观形貌 (×1 000)"

图2

HM和LM短纤维及其萃取纤维的DSC升降温曲线"

图3

HM和LM低聚物外观形貌 (×5 000)"

图4

HM与LM低聚物的DSC曲线"

图5

HM和LM低聚物紫外吸光光谱曲线"

图6

PET环状低聚物结构图"

图7

HM和LM短纤维的XRD曲线"

图8

热诱导对HM短纤维外观形貌的影响 (×1 000)"

图9

热诱导对LM短纤维外观形貌的影响 (×1 000)"

[1] LI Hao, PEI Liujun, ZHANG Hongjuan, et al. Extraction of cyclic oligomer and their influence on polyester dyeing in a silicone waterless dyeing system[J]. Polymers, 2021. DOI:10.3390/polym13213687.
[2] 赵梦肖, 包建娜, 王滢, 等. PET环状低聚物的表征及其开环聚合研究[J]. 合成纤维工业, 2021, 44(2): 32-37.
ZHAO Mengxiao, BAO Jianna, WANG Ying, et al. Characterization and ring-opening polymerization of PET cyclic oligomer[J]. China Synthetic Fiber Industry, 2021, 44(2): 32-37.
[3] 祝爱兰, 任明利. PET中环状齐聚物的研究[J]. 上海化工, 2005 (5): 24-28.
ZHU Ailan, REN Mingli. Study on ring oligomers in PET[J]. Shanghai Chemical Industry, 2005(5): 24-28.
[4] BRYANT J J L, SEMLYEN J A. Cyclic polyesters: 6: preparation and characterization of two series of cyclic oligomers from solution ring-chain reactions of poly(ethylene terephthalate)[J]. Polymer, 1997, 38(10): 2475-2482.
doi: 10.1016/S0032-3861(96)00801-4
[5] SARA Ubeda, MARGARITA Aznar, CRISTINA Nerin. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF[J]. Analytical and Bioanalytical Chemistry, 2018, 410(9): 2377-2384.
doi: 10.1007/s00216-018-0902-4 pmid: 29428989
[6] GOODMAN I, NESBITT B F. The structures and reversible polymerization of cyclic oligomers from poly(ethylene terephthalate)[J]. Polymer, 1960, 1: 384-396.
doi: 10.1016/0032-3861(60)90048-3
[7] LIM B H, KWON S H, KANG E C, et al. Isolation and identification of cyclic oligomers of the poly(ethylene terephthalate)-poly(ethylene isophthalate co-polymer[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41: 881-889.
doi: 10.1002/pola.v41:7
[8] JOSEPH Cho, YOUK J H, JO Won, et al. Cyclization routes for formation of cyclic oligomers in poly(ethylene terephthalate)[J]. Macromolecular Chemistry and Physics, 2001, 202: 998-1003.
doi: 10.1002/(ISSN)1521-3935
[9] COOPER D R, SEMLYEN J A. Equilibrium ring concentrations and the statistical conformations of polymer chains: part 11: cyclics in poly(ethylene terephthalate)[J]. Polymer, 1973, 14(5): 185-192.
doi: 10.1016/0032-3861(73)90045-1
[10] VERMYLEN V, LODEFIER Philippe, DEVAUX Jacques, et al. Study of the thermal evolution of the cyclic-oligomer formation in a cyclic-oligomer-free PET[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38: 416-422.
doi: 10.1002/(ISSN)1099-0518
[11] CIMECIOGLU A L, ZEONIAN S H, ALGER K W, et al. Properties of oligomers present in poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 1986, 32(4): 4719-4733.
doi: 10.1002/app.1986.070320436
[12] 张锡玮. 聚酯中的环状齐聚物(Ⅰ)[J]. 合成纤维工业, 1988, 11(4): 52-59.
ZHANG Xiwei. Ring oligomers in polyesters (Ⅰ)[J]. Synthetic Fiber Industry, 1988, 11(4): 52-59.
[13] 张大省. 聚酯合成过程中环状三聚体的生成与控制[J]. 合成纤维, 2022, 51(10): 1-6.
ZHANG Dasheng. Generation and control of cyclic trimer on synthesis of polyester[J]. Synthetic Fiber in China, 2022, 51(10): 1-6.
[14] 郑敏, 宋心远. 聚酯纤维染整加工中低聚物问题的研究[J]. 染料与染色, 2005 (4): 49-52.
ZHENG Min, SONG Xinyuan. Study on the oligomer problem involved during dyeing and Finishing of polyester fiber[J]. Dyestuffs and Coloration, 2005 (4): 49-52.
[15] 张龙, 智海辉, 郑今欢. 前处理对再生聚酯织物表面低聚物的影响[J]. 浙江理工大学学报, 2015, 33(7): 429-433.
ZHANG Long, ZHI Haihui, ZHENG Jinhuan. Influence of pretreatment on surface oligomers of recycled polyester fabric[J]. Journal of Zhejiang University, 2015, 33(7): 429-433.
[16] 曾笑笑, 邢建伟, 徐成书, 等. 原位矿化技术对涤纶染色过程低聚物的影响[J]. 印染, 2019, 45(4): 32-35.
ZENG Xiaoxiao, XING Jianwei, XU Chengshu, et al. Effect of in-situ mineralization technology on oligomers in polyester dyeing process[J]. China Printing & Dyeing, 2019, 45(4): 32-35.
[17] PEI Liujun, LI Hao, ZHANG Hongjuan, et al. Migration and chemical characterization of cyclic oligomers from polyester fiber in waterless dyeing system[J]. Fibers and Polymers, 2022, 23(9): 2648-2656.
doi: 10.1007/s12221-022-3195-3
[18] 张新忠, 陈彦模, 张瑜, 等. PET切片低聚物的萃取工艺及其表征[J]. 合成技术及应用, 2009, 24(1): 1-4.
ZHANG Xinzhong, CHEN Yanmo, ZHANG Yu, et al. Extraction technology and characterization of oligomers from PET slices[J]. Synthetic Technology & Application, 2009, 24(1): 1-4.
[19] 王勇军, 陈世昌, 刘梅, 等. 高分子量聚对苯二甲酸乙二醇酯中低聚物的提取及其表征[J]. 纺织学报, 2018, 39(11): 1-7.
WANG Yongjun, CHEN Shichang, LIU Mei, et al. Extraction and characterization of oligomers from high molecular weight poly (ethylene terephthalate)[J]. Journal of Textiles Research, 2018, 39(11): 1-7.
doi: 10.1177/004051756903900101
[20] 符朝贵. BOPET薄膜加工中低聚物的产生和防止[J]. 塑料包装, 2014, 24(2): 7-10.
Fu Chaogui. Generation and prevention of oligomers in BOPET film processing[J]. Plastic Packaging, 2014, 24(2): 7-10.
[21] OSWALD H J, TURI E A, HARGET P J, et al. Development of a middle endotherm in DSC thermograms of thermally treated drawn PET yarns and its structural and mechanistic interpretation[J]. Journal of Macromolecular Science: Part B, 2006, 13(2): 231-254.
doi: 10.1080/00222347708212204
[22] BINNS G L, FROST J S, SMITH F S, et al. Allotropy of cyclic tris(ethylene terephthalate)[J]. Polymer, 1966, 7(11): 583-585.
doi: 10.1016/0032-3861(66)90050-4
[23] 范瑛, 海基邦. 涤纶中环状三聚体的研究[J]. 上海纺织科技, 1989(3): 4-8.
FAN Ying, HAI Jibang. Study on ring trimers in polyester[J]. Shanghai Textile Science & Technology, 1989(3): 4-8.
[24] MARIA Hoppe, FORNARI Fornari, PIM Devoogt, et al. Migration of oligomers from PET: determination of diffusion coefficients and comparison of experimental versus modelled migration[J]. Food Additives & Contaminants: Part A, 2017, 34(7): 1251-1260.
[1] 李久刚, 金鑫鹏, 邓文韬, 秦雪, 张贺, 黄丛, 刘可帅. 氧化铝纱线的合股数与捻度对其强度的影响[J]. 纺织学报, 2023, 44(10): 48-52.
[2] 王瑞, 司银松, 芦浩浩, 杲爽, 傅雅琴. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
[3] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[4] 占镠祥, 李婉, 王高军, 赵先丽, 王妮, 李毓陵. 微波处理在蛋白质纤维加工中的应用研究进展[J]. 纺织学报, 2020, 41(08): 128-134.
[5] 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10.
[6] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
[7] 曲腾云 于伟东. 纤维素纤维的生物降解性能[J]. 纺织学报, 2015, 36(11): 20-26.
[8] 全琼瑛 胡金莲 吕晶. 高紧度形状记忆纤维/棉机织物的记忆性能[J]. 纺织学报, 2013, 34(7): 57-61.
[9] 魏安方, 王娟, 凤权, 汪学骞, 魏取福, 侯大寅. 左旋聚乳酸/氟尿嘧啶复合纳米纤维膜的制备[J]. 纺织学报, 2011, 32(12): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!