纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 138-144.doi: 10.13475/j.fzxb.20221001901

• 服装工程 • 上一篇    下一篇

服装逆向造型的数字化设计方法

周莉1,2(), 樊培宏1,2, 金玉婷1,2, 张龙琳1,2,3, 李新荣4   

  1. 1.西南大学 蚕桑纺织与生物质科学学院, 重庆 400715
    2.数字时尚智能设计研究院, 重庆 401120
    3.纺织服装产业互联网研究院, 北京 100036
    4.天津工业大学 机械工程学院, 天津 300387
  • 收稿日期:2022-10-09 修回日期:2023-09-13 出版日期:2023-12-15 发布日期:2024-01-22
  • 作者简介:周莉(1977—),女,教授,硕士。主要研究方向为服装数字化智能可穿戴设计。E-mail:mydtcazz@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFB1308801);国家艺术基金数字化人才培养项目((2020-A-05-(035)-395)

Digital design method of clothing reverse modeling

ZHOU Li1,2(), FAN Peihong1,2, JIN Yuting1,2, ZHANG Longlin1,2,3, LI Xinrong4   

  1. 1. College of Sericulture Textile and Biomass Science, Southwest University, Chongqing 400715, China
    2. Research Institute of Digital Fashion and Intelligent Design, Chongqing 401120, China
    3. Research Institute of Textile and Fashion Industry Internet, Beijing 100036, China
    4. College of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-10-09 Revised:2023-09-13 Published:2023-12-15 Online:2024-01-22

摘要:

针对服装设计作品从实物到数字模型生成需要通过数据重构达到倍增设计量的问题,提出服装逆向数字化造型设计方法。首先通过三维扫描得到设计作品点云数据后,经过去噪、修补和预处理,简化并拓扑为四边形网格;再对奇点形成的异形网格进行曲面重构设计,包括奇点的位置调整、数量增减和形态变化,为服装逆向造型延展设计提供参照依据;最后进行纹理、颜色和材质的映射还原,实现逆向思维的服装造型数字化模拟。研究表明:逆向造型的数字化设计方法提升了数据复原和保存的效率与精确度;逆向造型延展设计实现了快速增加二次造型设计量,且完善后的延展设计作品模拟可反向拓扑服装的版型图纸,也为服装版型设计和同类型服装结构优化奠定基础。

关键词: 逆向造型, 拓扑优化, 曲面重构, 奇点, 延展设计, 服装设计

Abstract:

Objective Aiming to obtain doubled amount of design through data reconstruction during generating the digital model from the physical object of the design work, a digital design method of clothing reverse modeling is built up. It mainly addresses two problems: one is to restore and save the data of irreproducible clothing, the other is to carry out reverse modeling and extension design of excellent clothing works.
Methods The point cloud data obtained through 3-D scanning were simplify, and the topology into a quadrilateral grid was optimized. Then, surface reconstruction design was carried out on the special-shaped grids caused by singular points, with position adjusting, quantity increasing and decreasing, and shape changing. As the last step, the digital simulation design of clothing modeling was set up following reverse engineering through mapping and restoration.
Results The clothing design ideas and methods were submitted based on the reverse modeling process (Fig. 1), which could restore quickly the virtual experimental objects and provide designers with new design methods and skills for secondary expansion modeling. The rationality of the pattern structure was verified by the three-dimensional effect of the clothing and the actual object with distinctive features. First, it collects, restores and stores data of irreproducible clothing by clothing models acquiring model topological surface reduction, modeling structure splitting, and texture mapping (Fig. 2). Second, it calibrates the position of the singularity to provide a reference method to quickly carry out reverse modeling and extension design on excellent clothing works (Fig. 3). Third, it carries out extension modeling by adjusting the position of the singularity, increasing or decreasing the number, changing the shape of the surface reconstruction design, and making a real entity for objective verification (Fig. 4). The shape and structure of improved extension design work could be transformed into planes, and the pattern drawing of the reverse topology clothing provides a basis for pattern adjustment, and also lays the foundation for clothing shape design and same type clothing structure optimization (Fig. 5). Fourth, it can be converted into an editable structural pattern based on the expansion of the pattern drawing, so as to further carry out the simulation operation and experiment of the clothing model (Fig. 6). At the same time, dynamic simulation of a series of transformations such as on clothing material, texture and new shape can be carried out (Fig. 7).
Conclusion Taking a drape-cut garment with complex shape as an example, the rationality and feasibility of the garment reverse shape design method are verified. At the same time, it is possible to reversely draw out the clothing version or digital model, to carry out version extension and try-on corrections with 3-D digital software, and to verify the final shape obtained by the reverse modeling method. This method aims to reduce the waste of resources and pollution caused by forward fashion design, to address the long production cycle, and to use digital modeling to improve the high-quality development of design innovation.

Key words: reverse modeling, topology optimization, surface reconstruction, singularity, extension design, clothing design

中图分类号: 

  • TS941.26

图1

逆向造型设计思路"

图2

逆向造型实验流程"

图3

网格优化划分"

图4

逆向造型延展系列"

图5

版型对比"

图6

UV裁片拓版及缝制"

图7

逆向设计动态模拟"

[1] 张宏伟. ATA125-T型ATV车身覆盖件的逆向造型[D]. 南昌: 南昌大学, 2014:15-53.
ZHANG Hongwei. Reverse modeling of ATA125-T ATV body cover[D]. Nanchang: Nanchang University, 2014:15-53.
[2] 李国华. 复杂箱体的数字化测量与逆向设计[D]. 洛阳: 河南科技大学, 2017:8-59.
LI Guohua. Digital measurement and reverse design of complex box[D]. Luoyang: Henan University of Science and Technology, 2017:8-59.
[3] 周峰. 整体叶轮的逆向造型及数控仿真加工[D]. 武汉: 湖北工业大学, 2017:1-4.
ZHOU Feng. Reverse modeling and numerical control simulation machining of integral impeller[D]. Wuhan: Hubei University of Technology, 2017:1-4.
[4] 周信安, 宁栋, 徐家忠, 等. 基于WIN3D-M的航空叶轮逆向造型技术研究[J]. 锻压装备与制造技术, 2022, 57(1):94-96.
ZHOU Xin'an, NING Dong, XU Jiazhong, et al. Research on reverse molding technology of aviation impeller based on WIN3D-M[J]. Forging Equipment & Manufacturing Technology, 222, 57(1):94-96.
[5] 刘佳龙. 基于逆向工程的义齿底层冠三维重建系统研究与开发[D]. 沈阳: 东北大学, 2010:24-57.
LIU Jialong. Research and development of three-dimensional reconstruction system of denture crown based on reverse engineering[D]. Shenyang: Northeastern University, 2010:24-57.
[6] 江一亨. 基于Alias的汽车车身曲面逆向造型研究[D]. 昆明: 昆明理工大学, 2014:7-26.
JIANG Yiheng. Research on reverse modeling of automobile body surface based on Alias[D]. Kunming: Kunming University of Science and Technology, 2014:7-26.
[7] 傅亚楠. CATIA逆向造型曲面优化技术研究[D]. 长春: 长春理工大学, 2011:12-52.
FU Yanan. Research on CATIA reverse modeling surface optimization technology[D]. Changchun: Changchun University of Science and Technology, 2011:12-52.
[8] 熊博文, 袁大鹏. 基于“逆向思维”重组在服装设计中的应用与研究[J]. 服装设计师, 2021(11):127-133.
XIONG Bowen, YUAN Dapeng. Application and research of recombination based on "reverse thinking" in fashion design[J]. Fashion Designer, 2021(11):127-133.
[9] 宋莹, 相思曼, 孙雅致. 基于虚拟仿真技术的服装逆向流程优化设计[J]. 丝绸, 2022, 59(4):59-64.13.
SONG Ying, XIANG Siman, SUN Yazhi. Optimization design of garment reverse process based on virtual simulation technology[J]. Journal of Silk, 2022, 59(4):59-64.13.
[10] VARADY T, MARTIN R R, COX J. Reverse engineering of geometric models: an introduction[J]. Computer-Aided Design, 1997, 29(4): 255-268.
[11] 吕杰. 纹理映射技术在青铜器数字化复原中的应用[J]. 艺术研究, 2021(5):79-81.
LV Jie. Application of texture mapping technology in digital restoration of bronzes[J]. Art Research, 2021(5): 79-81.
[12] 余志才. 基于三维模型和深度学习的织物悬垂性能研究[D]. 上海: 东华大学, 2020:80-82.
XU Zhicai. A Study on fabric drape based on threedimensional model and deep learning[D]. Shanghai: Donghua University, 2020:80-82.
[13] 房征. 四边形网格拓扑优化方法的研究[D]. 济南: 山东大学, 2019:6-64.
FANG Zheng. Research on topology optimization method of quadrilateral mesh[D]. Ji'nan: Shandong University, 2013:6-64.
[14] 吕书明, 张明磊, 孙树立. 基于简化和细分技术的三角形网格拓扑优化方法[J]. 计算机辅助设计与图形学学报, 2014, 26(8):1225-1231.
LÜ Shuming, ZHANG Minglei, SUN Shuli. Topology optimization method of triangular meshes based on simplification and subdivision technology[J]. Journal of Computer Aided Design & Computer Graphics, 2014, 26(8): 1225-1231.
[15] OVAL R. Topology finding of patterns for structural design[D]. Paris: UniversitÉ Paris-Est, 2019:62-70.
[16] 崔汉锋, 马维垠, 林奕鸿, 等. 多个曲面拓扑模型及光滑重建方法的研究[J]. 计算机辅助设计与图形学学报, 2000(10):740-745.
CUI Hanfeng, MA Weiyin, LIN Yihong, et al. Research on multiple surface topological models and smooth reconstruction methods[J]. Journal of Computer Aided Design & Computer Graphics, 2000(10):740-745.
[17] 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(1):133-137.
JI Yanbo, WANG Lingli, LIU Kaixuan. Custom design of cheongsam based on digital 3-D human model[J]. Journal of Textile Research, 2021, 42(1): 133-137.
[1] 杨钰蝶, 李承璋, 金剑, 郑晶晶. 基于上肢活动性的灭火防护服背带的设计与评价[J]. 纺织学报, 2023, 44(11): 183-189.
[2] 刘咏梅, 刘思忆, 于晓坤, 薛惠心, 张向辉. 中国东部地区中老年女性体型特征与分类[J]. 纺织学报, 2023, 44(07): 184-191.
[3] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[4] 王迪, 柯莹, 王宏付. Voronoi图形在参数化服装造型构建中的应用[J]. 纺织学报, 2021, 42(12): 131-137.
[5] 金鹏, 薛哲彬, 江润恬, 刘丹宇, 张弛. 具有安全防护功能的智能盲人服设计[J]. 纺织学报, 2021, 42(08): 135-143.
[6] 唐茜, 张冰冰, 郑笑雨. 婴幼儿可穿戴智能监测服装设计[J]. 纺织学报, 2021, 42(08): 156-160.
[7] 徐增波, 张玲, 张艳红, 陈桂清. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(06): 146-152.
[8] 张恒. 基于翻领松量结构模型的翻折领结构设计方法[J]. 纺织学报, 2020, 41(11): 128-135.
[9] 杨娟, 张远鹏. 服装设计知识图谱中的服装装饰工艺分类模型[J]. 纺织学报, 2020, 41(08): 95-100.
[10] 刘佟. 基于人体曲面变化的服装几何空间设计[J]. 纺织学报, 2019, 40(11): 155-160.
[11] 李志强, 倪莉, 赵则祥, 张洪, 梁颖. 梳理机工作辊结构的优化设计[J]. 纺织学报, 2019, 40(08): 146-150.
[12] 陈雁. 服装设计与工程学科发展趋势与关键议题[J]. 纺织学报, 2019, 40(01): 182-188.
[13] 沈奕君 张婷婷 柯莹 王宏付. 三维参数化技术在构建现代服装新形态中的应用[J]. 纺织学报, 2018, 39(12): 118-123.
[14] 杨晓波. 基于语义分析的三维服装曲面生成算法[J]. 纺织学报, 2018, 39(11): 163-167.
[15] 杨晨啸 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(05): 160-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!