纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 234-242.doi: 10.13475/j.fzxb.20240102302

• 综合述评 • 上一篇    下一篇

面向织物疵点检测的深度学习技术应用研究进展

刘燕萍1, 郭佩瑶1, 吴莹1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江理工大学嵊州创新研究院, 浙江 嵊州 312400
    3.现代物流绿色低碳技术及产业化浙江省工程研究中心, 浙江 温州 325000
  • 收稿日期:2024-01-15 修回日期:2024-08-15 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 吴莹(1988—),女,副教授,博士。主要研究方向图像处理技术、基于机器学习的疵点检测技术。E-mail:ying012688@zstu.edu.cn
  • 作者简介:刘燕萍(1999—),女,硕士生。主要研究方向为图像处理技术、基于深度学习的疵点检测技术。
  • 基金资助:
    浙江理工大学优秀研究生学位论文培育基金项目(LW-YP2024037);浙江省教育厅一般科研项目(Y202352846);浙江理工大学嵊州创新研究院科研项目(SYY2023B000003);浙江理工大学基本科研业务费青年创新专项项目(22076229-Y)

Research progress in deep learning technology for fabric defect detection

LIU Yanping1, GUO Peiyao1, WU Ying1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou, Zhejiang 312400, China
    3. Zhejiang Engineering Research Center for Green and Low Carbon Technology and Industrialization of Modern Logistics, Wenzhou, Zhejiang 325000, China
  • Received:2024-01-15 Revised:2024-08-15 Published:2024-12-15 Online:2024-12-31

摘要:

为提高深度学习技术在疵点检测中的应用效率,推动纺织行业质量控制自动化与智能化发展。首先,对现有公开的疵点数据集进行整理,剖析织物疵点数据的现状及困境。其次,从监督学习、半监督学习和无监督学习三方面梳理了面向织物疵点检测的深度学习技术原理,对比各自的优缺点及适用场景。此外,对疵点检测领域常用的速度和精度评价指标进行了总结。最后,基于背景、检测方法及评价指标等多个维度,对深度学习各类网络在疵点检测任务中的实验结果进行了对比分析。结果表明,数据集质量是影响算法性能的关键因素。认为未来研究重点将是生成有织物纹理特性的高质量疵点,可自动标注的监督学习算法,以及提升无监督和半监督学习算法的检测性能。

关键词: 织物疵点检测, 深度学习, 目标检测, 疵点分类, 图像分割, 织物质量控制

Abstract:

Significance Automatic fabric defect detection is one of the key aspects of digital quality control in the textile industry. At present, the domestic fabric defect detection is mostly based on manual detection, but the traditional manual detection success rate of only 60%-75%, indicating that the method can't meet the demand for high-quality products. To overcome the drawbacks of manual defect detection, researchers have proposed a variety of learning-based defect detection algorithms. Compared with the manual detection, machine learning methods demonstrate a high detection rate, good stability and other characteristics. Bacause of the superiority of deep learning technology in defect detection, this technology is also used for fabric defect detection. In order to improve the efficiency of the application of deep learning technology in defect detection and to achieve digital quality control in the textile industry, the current status of research on deep learning technology in defect detection is discussed.

Progress Although traditional algorithms have achieved imroved results in some specific applications, there are still limitations when dealing with complex fabric textures. With the upgrading of computer hardware, the technology is superior in the fields of target detection and image classification, and is utilized in textile quality inspection. Since the introduction of deep learning, great breakthroughs have been made in target detection, which can be categorized into one-phase detection model and two-phase detection model in textile defect detection, both achieving better results in detection speed and detection accuracy. Due to the excellent feature extraction capability of neural networks, convolutional neural network (CNN) based classification networks are widely used for surface defect detection and classification, which can automatically learn different types of fabric defects and accurately categorize them into different classes. Various deep learning methods are superior to manual detection. Due to the difficulty in obtaining fabric datasets, research based on unsupervised learning and semi-supervised learning is gaining popularity, which trains on unlabeled data and a small amount of labeled data and reduces the dependence on labeled data. It can effectively deal with unlabeled datasets or situations where labeled data is scarce or unavailable, and it greatly reduces the working time compared to supervised learning where training is performed on labeled datasets.

Conclusion and Prospect This paper reviews the application of deep learning techniques to fabric defect detection. First, publicly available defect datasets are organized and analyzed. Secondly, the principles, advantages and disadvantages, and the scope of application of deep learning techniques for defect detection are summarized from three perspectives, i.e. supervised learning, semi-supervised learning and unsupervised learning. In addition, the commonly used speed and accuracy evaluation metrics in defect detection are sorted out. Finally, the experimental results of different deep learning networks in the detection task are objectively compared and analyzed, and the future development direction of fabric defect detection is envisioned. Supervised learning-based defect detection requires a large number of datasets, and the available public data resources are relatively scarce. Relying solely on manual labeling of fabric defects is not only time-consuming but also inefficient, therefore, automatic labeling of fabric defects and detection methods that do not require data labeling have become an important direction for future research. Currently, defect samples face many challenges in terms of data scarcity, labeling difficulty, and uneven data distribution, so unsupervised learning, weakly-supervised learning, zero-sample learning, and small-sample learning are receiving more and more attention in defect generation and detection. On the other hand, solving the data problem and developing defects with fabric texture characteristics is also one of the focuses of future research. Currently, most network structures are still designed manually. However, with the development of automatic machine learning techniques, more and more machines will be able to search and generate network architectures automatically, gradually replacing the traditional manual design.

Key words: fabric defect detection, deep learning, object detection, defect classification, image segmentation, quality control on fabric

中图分类号: 

  • TS101.9

表1

织物公开数据库"

数据集名称 图像
数量
疵点
种类
图像分辨率/
像素
织物
种型
公开网址
TILDA数据库 3 200 8 768×512 8 https://lmb.informatik.unifreiburg.de/resources/datasets/tilda.en.html
阿里云天池织物疵点数据集 10 500 16 4 096×1 696 https://tianchi.aliyun.com/dataset/79336
香港大学纹理织物图像数据集FID 82 450×450 3 https://ytngan.wordpress.com/codes/
AITEX 245 12 4 096×256 7 https://www.aitex.es/afid/
Kylberg纹理数据集 4 480 576×576 28 http://kylberg.org/kylberg-texture-dataset-v-1-0/
KTH-TIPS纹理图像数据集 810 1 280×960 10 https://www.csc.kth.se/cvap/databases/kth-tips/doc/kth_tips.html
DAGM2007 3 450 2 512×512 10 https://conferences.mpi-inf.mpg.de/dagm/2007/prizes.html

图1

织物疵点检测方法 注:R-CNN代表区域卷积神经网络;YOLO代表单阶段目标检测算法的代表算法;SPP-Net代表空间金字塔池化网络;SDD代表单次射击多边形检测器;FCN代表全卷积网络;Mean Teacher代表平均教师模型;VAT代表虚拟对抗训练; AE代表自编码器; VAE代表变分自编码; GAN代表生成对抗网络。"

表2

疵点检测单双阶段目标检测模型分析"

检测
算法
网络模型 改进 缺点 总结 文献
单阶段
检测模型
YOLO-VOC 改变学习率来优化YOLO-VOC网络模型 网络训练时间相比于同类型网络更长 无需人工提取特征,可准确定位色织布疵点并进行分类 [8]
YOLOv3 进行维度聚类,增加YOLO的检测层 检测速度慢,实时性还有待提高 该方法能够有效降低网络的错误率,检测精度提高 [9]
S-YOLO V3 使用K均值聚类算法,修减卷积层得到S-YOLOV3模型 小目标检测易漏检 检测准确率达到94%速度达到5帧/s [10]
YOLOV4 主干模型用CSPDarkNet-53 复杂纹理背景检测精度低 精度为95.3%,检测速度为34帧/s [11]
YOLO-SCD 引入深度可分离卷积和注意力机制 多种类型织物疵点的检测不足 平均检测精度提高了8.49%,并大幅提升了检测速度 [12]
SSD 改进SSD模型,利用较低的卷积特征层处理图像缺陷检测 泛化性较差,检测时效性还不足 在缺陷检索能力和检测精度上优于经典SSD目标检测模型 [13]
SSD 添加全卷积挤压激励(FCSE)模块,调整默认框的数量 缺陷分割精度较低 实现高速检测,准确检测不同纹理织物表面的各种缺陷 [14]
RetinaNet 添加高斯噪声的生成模型,添加分类模型来限制焦点生成器 小规模数据集检测,无法用于真实生产大规模数据 小规模织物疵点数据集上准确率达到83.4% [15]
双阶段
检测模型
Casecade R-CNN 使用多尺度训练,维度聚类方法,Soft-NMS代替NMS 织物图案相对简单,在复杂纹理疵点检测精度低 平均精度提高了8.9% [16]
Casecade R-CNN Resnet50结合特征金字塔网络和可变形卷积,训练一系列IoUs逐步增加的探测器 检测速度提高,但还无法实现自动化检测 织物疵点检测达到了91.57%的准确率 [17]
SPP-NET NSCT图像分解、DBN提取特征、ROI与SPP网络结合 模型训练时间增加,检测速度慢 能够有效去除斑点噪声,提高高分辨率SAR变化检测的鲁棒性 [18]
Faster R-CNN ResNet50代替VGG16网络,ROI Align替换ROI pooling 只在简单纹理缺陷上进行测试,模型速度训练慢 检测精度和收敛能力均有较大提升 [19]
Faster R-CNN Gabor核嵌入Faster R-CNN 识别颜色变化区域时间将其误认为是污点缺陷 平均精度达到94.57%,而更快的R-CNN为78.98% [20]
Faster R-CNN 添加FPN特征金字塔、ROI对齐和Soft-NMS 检测框重叠不明显时Soft-NMS抑制效果差别较小 实现98%的检测精度,平均精度平均值85% [21]

图2

疵点检测常用评价指标百分比"

表3

基于深度学习技术的疵点检测实验结果对比"

技术 数据集 网络 精度指标/% 速度指标 文献
检测
网络
阿里云天池数据疵点数据库6 000张 Faster R-CNN MAcc 94.6 [24]
坯布疵点数据库2 000张 Faster R-CNN与Resnet结合 MAP 99.6 130 ms/张 [25]
工厂自集6种疵点数据库810张 Faster R-CNN MAcc 95.8 0.3 s/张 [20]
TILDA数据库360张 Faster R-CNN MAP 97 [26]
碳纤维预浸染表面数据库1 000张 YOLOV2 检出率达到94 0.1 s/张 [27]
阿里云天池疵点数据库5 096张 YOLO-SCD MAP 82.9 46帧/s [12]
香港大学数据库(FID) 学生教师网络 MIoU 82.5 59帧/s [45]
分割
网络
DAGM 2007数据集2 099张图像 DeepLab v3+ AP 94.4,IoU 75.3 [51]
自建数据集该数据集包含6类疵点 ClothNet MIoU 78.8 [34]
DeepFashion2数据集 Mask R-CNN MIoU 75.9 [52]
企业数据集样本4 360个,AITEX数据集245张 SCU Net Acc 98.0 [53]
分类
网络
TILDA数据库3 200张 ResNet512 MAcc 96.5 [54]
TILDA数据库250张 其它CNN Acc 97.8、R 97.6 [40]
TILDA数据库3 200张 AE和VAE编解码网络 分类检出率达到90.0以上 [49]
异性纤维光谱库3 200张 基于VGG改进的卷积神经网络 Acc 99.6 [39]
蓝印花布纹样数据库21 212张 改进CifarNet网络 MAcc 99.6 [41]
Fashion-MNIST 70 000张 Π model + ALC Acc 82.0 [45]
[1] CHAN C H, PANG G K H. Fabric defect detection by fourier analysis[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1267-1276.
[2] DI L, LONG H B, LIANG J Z. Fabric defect detection based on illumination correction and visual salient features[J]. Sensors(Basel), 2020. DOI: 10.3390/s20185147.
[3] BUMRUNGKUN P. Defect detection in textile fabrics with snake active contour and support vector ma-chines[C]// 11th International Conference on Computer and Electrical Engineering (ICCEE).Tokyo: IOP Publishing Ltd, 2018(1195): 1742-6596.
[4] WU Y, ZHOU J, AKANKWASA N T, et al. Fabric texture representation using the stable learned discrete cosine transform dictionary[J]. Textile Research Journal, 2019, 89(3): 294-310.
[5] ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[6] 王斌, 李敏, 雷承霖, 等. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(1): 219-227.
WANG Bin, LI Min, LEI Chenglin, et al. Advances in deep learning-based fabric defect detection[J]. Journal of Textile Research, 2023, 44(1): 219-227.
[7] 程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7): 1428-1438.
CHENG Xu, SONG Chen, SHI Jingang, et al. A review of deep learning-based generalized target detection[J]. Acta Automation Sinica, 2021, 49(7): 1428-1438.
[8] ZHANG H W. Yarn-dyed fabric defect detection with yolov2 based on deep convolution neural net-works[C]// ZHANG L J, LI P F, GU D. IEEE 7th Data Driven Control and Learning Systems Confe-rence (DDCLS). Enshi: IEEE, 2018: 170-174.
[9] JING J F, ZHUO D, ZHANG H H, et al. Fabric defect detection using the improved yolov3 model[J]. Journal of Engineered Fibers and Fabrics, 2020. DOI: 10.1177/1558925020908268.
[10] ZHOU J, JING J F, ZHANG H H, et al. Real-time fabric defect detection algorithm based on s-yolov3 model[J]. Laser & Optoelectronics Progress, 2020. DOI: 10.3788/LOP57.161001.
[11] DLAMINI S, KAO C Y, SU S L, et al. Development of a real-time machine vision system for functional textile fabric defect detection using a deep yolov4 model[J]. Textile Research Journal, 2022, 92(5/6): 675-690.
[12] LUO X, NI Q, TAO R, et al. A light weight detector based on attention mechanism for fabric defect detec-tion[J]. IEEE Access, 2023(11): 33554-33569.
[13] LIU Z F. Fabric defects detection based on ssd[C]// LIU S L, LI C L, DING S, et al. 2nd International Conference on Graphics and Signal Proceed-sing (ICGSP).Sydney: [s.n.]2018: 74-78.
[14] XIE H S, ZHANG Y F, WU Z S. An improved fabric defect detection method based on ssd[J]. Aatcc Journal of Research, 2021(8): 182-191.
[15] QIN Y J. Focus generator with score classification on fabric defect detection[C]// CHEN M, QI L, SUN Y.31st IEEE International Conference on Tools with Artificial Intelligence (ICTAI).Portland, OR: IEEE, 2019: 1708-1714.
[16] LI F. Bag of tricks for fabric defect detection based on cascade R-CNN[J]. Textile Research Journal, 2021, 91(5/6): 599-612.
[17] LI H H. Integrating deformable convolution and pyramid network in cascade R-CNN for fabric defect detec-tion[C]// ZHANG H, LIU L, ZHONG H, et al. IEEE International Conference on Systems, Man, and Cybernetics (SMC).Toronto: IEEE, 2020: 3029-3036.
[18] HASHIMOTO Y, WATANABE Y, TAKANO H, et al. High diagnostic yield using advanced artificial intelligence in cytology of pancreatic cancer by eus-fna[J]. Gastroenterology, 2019, 156(6): S115-S115.
[19] ZHAO J, ZHOU S, ZHENG Q, et al. Fabric defect detection based on transfer learning and improved faster R-CNN[J]. Journal of Engineered Fibers and Fabrics, 2022. DOI: 10.1177/15589250221086647.
[20] CHEN M Q, YU L J, ZHI C, et al. Improved faster R-CNN for fabric defect detection based on gabor filter with genetic algorithm optimization[J]. Computers in Industry, 2022. DOI: 10.1016/j.compind.2021.103551.
[21] HE D F, WEN J J, LAI Z H. Textile fabric defect detection based on improved faster R-CNN[J]. Aatcc Journal of Research, 2021, 8(SUPPL 1): 83-91.
[22] KAHRAMAN Y, DURMUSOGLU A. Deep learning-based fabric defect detection: a review[J]. Textile Research Journal, 2023, 93(5/6): 1485-1503.
[23] LIU Z F. Fabric defect detection based on faster R-CNN[C]// LIU X H, LI C L, LI B C, et al. 9th International Conference on Graphic and Image Processing (ICGIP). Qingdao: ICGIP, 2017: 10615.
[24] 安萌, 郑飂默, 王诗宇, 等. 一种改进faster R-CNN的面料疵点检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1029-1033.
AN Meng, ZHENG Liaomo, WANG Shiyu, et al. An improved faster R-CNN method for fabric defect detection[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1029-1033.
[25] 晏琳, 景军锋, 李鹏飞. Faster rcnn模型在坯布疵点检测中的应用[J]. 棉纺织技术, 2019, 47(2): 24-27.
YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN model in blank fabric defect detec-tion[J]. Cotton Textile Technology, 2019, 47(2): 24-27.
[26] WU J, LE J, XIAO Z T, et al. Automatic fabric defect detection using a wide-and-light network[J]. Applied Intelligence, 2021, 51(7): 4945-4961.
[27] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(4): 51-57.
LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision[J]. Journal of Textile Research, 2020, 41(4): 51-57.
[28] 张丽瑶, 王志鹏, 徐功平. 基于SSD的织物疵点检测的研究[J]. 电子设计工程, 2020, 28(6): 40-44.
ZHANG Liyao, WANG Zhipeng, XU Gongping. Research on SSD-based fabric defect detection[J]. Electronic Design Engineering, 2020, 28(6): 40-44.
[29] ZHAO H Q, ZHANG T S. Fabric surface defect detection using se-ssdnet[J]. Symmetry-Basel, 2022. DOI: 10.3390/sym14112373.
[30] ZHANG Y. Steel defect detection based on modified retinanet[C]// GAO Y, SHEN L Y. 26th International Conference on Pattern Recognition/8th International Workshop on Image Mining-Theory and Applica-tions (IMTA). Montreal: IEEE, 2022: 3572-3579.
[31] LIANG H, YANG J L, SHAO M W. Fe-retinanet: small target detection with parallel multi-scale feature enhancement[J]. Symmetry-Basel, 2021. DOI: 10.3390/sym13060950.
[32] CHENG X, YU J B. Retinanet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021. DOI: 10.1109/TIM.2020.3040485.
[33] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39 (4): 640-651.
[34] ZHANG T S, MA H R. Clothnet: sensitive semantic segmentation network for fabric defect detection[J]. Textile Research Journal, 2023, 93(1/2): 103-115.
[35] 马浩然, 张团善, 王峰, 等. 基于语义生成与语义分割的机织物疵点检测方法[J]. 轻工机械, 2023, 41(1): 66-73.
MA Haoran, ZHANG Tuanshan, WANG Feng, et al. A defect detection method for woven fabrics based on semantic generation and semantic segmentation[J]. Light Industry Machinery, 2023, 41(1): 66-73.
[36] ZHOU Z Y, YANG X F, JI J F, et al. Classifying fabric defects with evolving inception v3 by improved l2,1-norm regularized extreme learning machine[J]. Textile Research Journal, 2023, 93(3/4): 936-956.
[37] SABEENIAN R S, PAUL E, PRAKASH C. Fabric defect detection and classification using modified vgg network[J]. Journal of The Textile Institute, 2023, 114(7): 1032-1040.
[38] CELIK H I, DULGER L C, OZTAS B, et al. A novel industrial application of cnn approach: real time fabric inspection and defect classification on circular knitting machine[J]. Tekstil Ve Konfeksiyon, 2022, 32(4): 344-352.
[39] 李学良, 杜玉红, 任维佳, 等. 基于近红外光谱和残差神经网络的异性纤维分类识别[J]. 纺织学报, 2023, 44(5): 84-92.
LI Xueliang, DU Yuhong, REN Weijia, et al. Classification and identification of anisotropic fibers based on near-infrared spectroscopy and residual neural network[J]. Journal of Textile Research, 2023, 44(5): 84-92.
[40] ZHAO X Q, ZHANG M, ZHANG J J. Ensemble learning-based cnn for textile fabric defects classifica-tion[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 664-678.
[41] 贾小军, 叶利华, 邓洪涛, 等. 基于卷积神经网络的蓝印花布纹样基元分类[J]. 纺织学报, 2020, 41(1): 110-117.
JIA Xiaojun, YE Lihua, DENG Hongtao, et al. Convolutional neural network-based primitive classification of blue printed fabric pattern[J]. Journal of Textile Research, 2020, 41(1): 110-117.
[42] LAINE S, AILA T. Temporal ensembling for semi-supervised learning[J]. arXiv, 2016. DOI: 10.48550/arXiv.1610.02242.
[43] TARVAINEN A. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[C]// VALPOLA H. 31st Annual Conference on Neural Information Processing Systems (NIPS). Long Beach, CA: Curran Associates Inc, 2017. DOI: 10.48550/arXiv.1703.01780.
[44] MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993.
[45] CHEN J M, YANG M, LING J. Attention-based label consistency for semi-supervised deep learning based image classification[J]. Neurocomputing, 2021(453): 731-741.
[46] SHAO L H, ZHANG E H, MA Q R, et al. Pixel-wise semisupervised fabric defect detection method combined with multitask mean teacher[J]. IEEE Transactions on Instrumentation and Measurement, 2022. DOI: 10.1109/TIM.2022.3162286.
[47] WEI C, LIANG J Z, LIU H, et al. Multi-stage unsupervised fabric defect detection based on dcgan[J]. Visual Computer, 2022, 39(12): 6655-6671.
[48] HE X J, CHANG Z W, ZHANG L H, et al. A survey of defect detection applications based on generative adversarial networks[J]. IEEE Access, 2022(10): 113493-113512.
[49] WEI W, DENG D X, ZENG L, et al. Real-time implementation of fabric defect detection based on variational automatic encoder with structure simi-larity[J]. Journal of Real-Time Image Processing, 2021, 18(3): 807-823.
[50] OLIMOV B. Unsupervised deep learning-based end-to-end network for anomaly detection and localiza-tion[C]// SUBRAMANIAN B, KIM J.13th Interna-tional Conference on Ubiquitous and Future Networks (ICUFN). Barcelona: IEEE, 2022: 444-449.
[51] TANG C W, FENG X X, WEN H T, et al. Semantic segmentation network for surface defect detection of automobile wheel hub fusing high-resolution feature and multi-scale feature[J]. Applied Sciences-Basel, 2021. DOI: 10.3390/app112210508.
[52] 顾梅花, 刘杰, 李立瑶, 等. 结合特征学习与注意力机制的服装图像分割[J]. 纺织学报, 2022, 43(11): 163-171.
GU Meihua, LIU Jie, LI Liyao, et al. Combining feature learning and attention mechanism for garment image segmentation[J]. Journal of Textile Research, 2022, 43(11): 163-171.
[53] CHENG L, YI J Z, CHEN A B, et al. Fabric defect detection based on separate convolutional unet[J]. Multimedia Tools and Applications, 2023, 82(2): 3101-3122.
[54] JEYARAJ P R, NADAR E R S. Effective textile quality processing and an accurate inspection system using the advanced deep learning technique[J]. Textile Research Journal, 2020, 90(9/10): 971-980.
[1] 蔡丽玲, 王梅, 邵一兵, 陈炜, 曹华卿, 季晓芬. 基于改进堆叠生成对抗网络的传统汉服智能定制推荐[J]. 纺织学报, 2024, 45(12): 180-188.
[2] 李杨, 张永超, 彭来湖, 胡旭东, 袁嫣红. 基于改进甲壳虫全域搜索算法的机织物疵点检测[J]. 纺织学报, 2024, 45(10): 89-94.
[3] 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172.
[4] 朱凌云, 王晨宇, 赵悦莹. 基于多度量多模型图像投票的织物表面瑕疵检测方法[J]. 纺织学报, 2024, 45(06): 89-97.
[5] 顾梅花, 花玮, 董晓晓, 张晓丹. 基于上下文提取与注意力融合的遮挡服装图像分割[J]. 纺织学报, 2024, 45(05): 155-164.
[6] 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173.
[7] 扶才志, 曹鸿艳, 廖文皓, 李忠健, 黄琪翔, 蒲三成. 基于多视角图像的纱线条干均匀度测量方法[J]. 纺织学报, 2024, 45(03): 49-57.
[8] 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202.
[9] 池盼盼, 梅琛楠, 王焰, 肖红, 钟跃崎. 基于边缘填充的单兵迷彩伪装小目标检测[J]. 纺织学报, 2024, 45(01): 112-119.
[10] 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146.
[11] 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175.
[12] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[13] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[14] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[15] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!