纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 215-225.doi: 10.13475/j.fzxb.20240801601

• 机械与设备 • 上一篇    下一篇

基于屈曲变形的压板式缝合机器人驱动力建模

李顺1,2, 贾彦军1,2(), 李新荣1,2, 冯文倩1,2, 文嘉琪1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学绍兴柯桥研究院, 浙江 绍兴 312030
  • 收稿日期:2024-08-12 修回日期:2024-12-02 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 贾彦军(1981—),男,高级实验师,博士。主要研究方向为纺织服装装备智能化。E-mail:jiayanjun@tiangong.edu.cn
  • 作者简介:李顺(1999—),男,硕士生。主要研究方向为面向鞋服行业的机器人关键技术。
  • 基金资助:
    江苏省科技计划项目(BE2022061-2)

Modeling of driving force for pressure plate sewing robot based on flexural deformation

LI Shun1,2, JIA Yanjun1,2(), LI Xinrong1,2, FENG Wenqian1,2, WEN Jiaqi1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Shaoxing Keqiao Institute of Tiangong University, Shaoxing, Zhejiang 312030, China
  • Received:2024-08-12 Revised:2024-12-02 Published:2025-04-15 Online:2025-06-11

摘要:

压板式协同缝合机器人是未来服装生产的主要设备,施加在压板上的驱动力、压板尺寸的不合适将导致裁片屈曲变形、起皱,直接影响缝合质量。针对压板按压裁片直线移动缝合过程中裁片出现的受力变形与压板尺寸难匹配问题,首先采用能量守恒法对裁片受压板与缝纫针共同作用时的屈曲变形过程进行研究,依据裁片屈曲时的非线性弯曲特性建立最小驱动力模型与裁片临界屈曲尺寸模型;其次根据剪力平衡条件与相框剪切实验对压板两侧裁片的剪切变形情况进行分析,建立两侧裁片挤压变形阶段临界状态下的最大驱动力模型;最后通过有限元仿真分析和搭建缝合机、压板协同缝合实验平台对所建模型进行验证,证明了驱动力模型与临界屈曲尺寸模型的正确性。结果表明,该驱动力模型为裁片直线移动缝合应施加的外力范围提供凭证,临界屈曲尺寸模型为实际生产压板尺寸的选择提供理论支撑,最终为保证缝合质量、效率和压板尺寸的选择提供依据。

关键词: 缝合机器人, 服装生产, 服装裁片, 驱动力模型, 屈曲变形, 缝合质量

Abstract:

Objective To address the issues of crooked deformation and shear deformation in cut pieces caused by inadequate driving force and platen size, as well as the frequent need to replace the platen during the sewing process where the platen presses against the cut pieces, this study investigates the linear movement of the platen during this sewing process. The aim is to establish relationships between cut piece parameters, driving force size, and platen size, and to subsequently enhance the quality of cut piece sewing.

Method The study employed the energy conservation method to analyze the buckling deformation process of the cut piece, and established models for the minimum driving force and the critical buckling size of the cut piece, based on the nonlinear bending characteristics during buckling. The shear deformation of the cut piece on both sides of the platen was examined and a model was developed to calculate the maximum driving force under critical conditions on both sides. The models were validated through finite-element simulation analysis and experiments.

Results The minimum driving force model presented in this paper provides the minimum force required for the platen to press the cut piece during straight-line sewing without causing bending deformation. The factors influencing this minimum driving force included the initial sharp angle of the sewing needle α, the thickness of the cut piece Z, the proportionality coefficient K, the friction coefficient between the cut piece and the sewing table μ, and the weight of the cut piece m1, all of which were found positively correlated with the minimum driving force. The maximum driving force model offers the maximum driving force value to prevent shear deformation during sewing. It was found that the maximum driving force of the platen was mainly positively correlated with parameters such as the coefficient of friction between yarns μ2, bending stiffness of the cut piece Ez, width of the yarns w, and the weight of the cut piece m1. The maximum driving force was negatively correlated with parameters including the length of the yarns PY between two intersections of warp and weft yarns, the width of the single-cell model S, and the angle θ between the shear force Fs and the upward closing force Fl. The critical buckling size model provides a basis for selecting the appropriate platen size. The critical buckling size was mainly positively related to parameters such as the initial sharp angle of the sewing needle α, bending stiffness of the cut piece B, thickness of the cut piece Z, and the angle γ between the moving direction of the platen and the direction of the cut piece's buckling. The critical buckling size was proved to be negatively correlated with the forcing torque M0, the total mass of the cut piece m1, and the friction coefficient between the cut piece and the sewing table μ. Finally, by comparing the theoretical data with the data obtained from simulation and experimentation, the correctness of the theoretical data was confirmed, further validating the driving force model and the critical buckling model.

Conclusion The establishment of the driving force model provides a range of driving force values for the platen to press the cut piece during the sewing process, ensuring that the cut piece does not undergo bending deformation or shear deformation. This avoids the deformation issues that arise from inadequate driving force during sewing. The critical buckling size model offers a basis for selecting the appropriate platen size, mitigating problems such as bending deformation and frequent platen replacement due to improper platen size during the sewing process. Compared to traditional empirical methods for selecting driving force and platen size, the development of these models addresses issues related to cropping deformation, wrinkles, and platen size selection in mobile sewing, significantly improving the sewing quality and efficiency of cut pieces.

Key words: sewing robot, garment processing, cut piece for garment, driving force model, buckling deformation, sewing quality

中图分类号: 

  • TS941.61

图1

压板按压裁片缝合"

图2

裁片受力分析 注:1—压板;2—裁片;3—缝迹。"

图3

裁片缝合过程中的屈曲变形 注:4—缝纫针;5—屈曲方向。"

图4

裁片屈曲示意图"

图5

缝纫针穿刺裁片时所受阻力分析"

图6

裁片屈曲模型"

图7

裁片剪切变形示意图"

图8

平纹机织裁片单胞模型"

图9

经纬纱线交织区域"

表1

实验工件材料属性"

材料 面密度/(kg·m-2) 弹性模量/GPa 泊松比
缝纫针 7 850 200 0.3
压板 270 270 0.33
橡胶 95 000 1 500 0.47

表2

压板参数"

试样编号 材料 尺寸/mm 厚度/mm 质量/g
1 铝合金 132×97 6 207.42
2 铝合金 136×100 6 220.32
3 铝合金 140×103 6 233.60
4 铝合金 144×106 6 247.28

图10

网格划分结果"

图11

压板按压裁片直线移动缝合实验平台"

表3

平纹裁片参数"

试样
编号
密度/(根·(10 cm)-1) 面密度/
(g·m-2)
弯曲刚度/
(cN·mm2·mm-1)
质量/
g
厚度/
mm
纱线间摩
擦因数
橡胶与裁片
间摩擦因数
纬向断裂
强力/N
经向断裂
强力/N
经密 纬密
1# 602 295 105.8 0.660 3 194.56 0.196 0.293 0.628 440 580
2# 560 322 108.0 0.828 0 208.35 0.199 0.272 0.654 450 610
3# 595 301 112.9 0.984 8 262.23 0.287 0.238 0.617 460 620
4# 640 302 114.6 1.018 0 226.67 0.212 0.244 0.624 470 660

表4

驱动力与临界屈曲尺寸数学模型理论值"

试样编号 L/mm L1/mm L2/mm Fmin/cN Fmax/cN
1# 30.03 105.96 143.96 46.53 282.36
2# 32.64 102.80 139.78 51.69 285.49
3# 32.79 102.66 139.54 52.47 285.97
4# 34.83 100.20 136.28 57.18 289.58

图12

裁片所受驱动力与缝缩率之间的关系"

图13

150 cN时L段裁片长度与其发生形变之间关系"

图14

200 cN时L段裁片长度与其发生形变之间关系"

[1] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝合机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(4): 191-200.
WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction[J]. Journal of Textile Research, 2021, 42(4): 191-200.
[2] PHAN P T, HOANG T T, THAI M T, et al. Twisting and braiding fluid-driven soft artificial muscle fibers for robotic applications[J]. Soft Robotics, 2022, 9(4): 820-836.
[3] LI J, ZHOU C, LONG J, et al. Computational design of shape-changing robotic mannequin based on 3D human models[J]. Textile Research Journal, 2021, 91(9/10): 1065-1082.
[4] HOU Y C, SAHARI K S M, HOW D N T. A review on modeling of flexible deformable object for dexterous robotic manipulation[J]. International Journal of Advanced Robotic Systems, 2019, 16(3): 18-26.
[5] El Messiry M, EL-TARFAWY S. Mechanical properties and buckling analysis of woven fabric[J]. Textile Research Journal, 2019, 89(14): 2900-2918.
doi: 10.1177/0040517518803777
[6] MOUSAZADEGAN F, LATIFI M. Investigating the relation of fabric's buckling behaviour and tension seam pucker formation[J]. The Journal of The Textile Institute, 2019, 110(4): 562-574.
[7] WANG Y, ZHANG W, REN H, et al. An analytical model for the tension-shear coupling of woven fabrics with different weave patterns under large shear deformation[J]. Applied Sciences, 2020, 10(4): 1551-1566.
[8] AHMAD B, FANG X. Modeling shear behavior of woven fabric thermoplastic composites for crash simulations[J]. Applied Composite Materials, 2020, 27(6): 739-765.
[9] 王晓华, 王育合, 张蕾, 等. 缝纫机器人对织物张力与位置的模糊阻抗控制J]. 纺织学报, 2021, 42(11): 173-178.
doi: 10.13475/j.fzxb.20200605706
WANG Xiaohua, WANG Yuhe, ZHANG Lei, et al. Force and position fuzzy impedance control of a sewing robot[J]. Journal of Textile Research, 2021, 42 (11): 173-178.
doi: 10.13475/j.fzxb.20200605706
[10] PENG L, LI Y, ZHENG Q, et al. Measurement of axial motion yarn tension based on transverse vibration frequency[J]. Textile Research Journal, 2023, 93(5/6): 1019-1029.
[11] 付天宇, 李凤鸣, 崔涛, 等. 基于视觉/力觉的机器人协同缝制系统[J]. 机器人, 2022, 44(3): 352-360.
doi: 10.13973/j.cnki.robot.210414
FU Tianyu, LI Fengming, CUI Tao, et al. A robotic collaborative sewing system based on visual and force perception[J]. Robot, 2022, 44 (3): 352-360.
doi: 10.13973/j.cnki.robot.210414
[12] 文嘉琪, 李新荣, 李兴兴, 等. 面向服装面料自动缝合的缝纫工艺参数建模[J]. 纺织学报, 2023, 44(3): 158-167.
WEN Jiaqi, LI Xinrong, LI Xingxing, et al. Parametrical modeling of sewing process for automatic stitching of garment fabrics[J]. Journal of Textile Research, 2023, 44(3): 158-167.
[13] SUN Y, TIAN Y, ZHENG D, et al. Theoretical modeling and characterization of bending properties of fabrics with friction and extensibility effect[J]. The Journal of the Textile Institute, 2022, 113(5): 748-760.
[14] LIMENEH D Y, AYELE M, TESFAYE T, et al. Effect of weave structure on comfort property of fabric[J]. Journal of Natural Fibers, 2022, 19(11): 4148-4155.
[15] BAI R, MA Y, LEI Z, et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test[J]. Composites Part A(Applied Science and Manufacturing), 2020. DOI: 10.1016/j.compositesa.2019.105678.
[16] CHEN H, LI S, WANG J, et al. A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic com-posites[J]. Composites Part B(Engineering), 2020. DOI: 10.1016/j.compositesb.2021.109196.
[17] 侯耀晟树, 郭纬愉, 杜永龙, 等. 平纹SiC纤维织物剪切性能[J]. 硅酸盐通报, 2023, 42 (3): 1063-1073.
HOU Yaoshengshu, GUO Weiyu, DU Yonglong, et al. Shear properties of plain weave sic fiber fabrics[J]. Bulletin of the Chinese Ceramic Society, 2023, 42 (3): 1063-1073.
[18] CUBRIC I S, SKENDERI Z, HAVENITH G. Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance[J]. Textile Research Journal, 2013, 83(12): 1215-1228.
[1] 黄小源, 王青云, 侯珏, 杨阳, 刘正. 基于技能熟练度的服装流水线仿真优化及其应用[J]. 纺织学报, 2025, 46(01): 169-178.
[2] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[3] 马梓鸿, 陈慧敏, 丁孟孟, 岳晓丽. 面料堆垛非接触式分层吸附工艺模型与系统构建[J]. 纺织学报, 2024, 45(05): 209-217.
[4] 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192.
[5] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[6] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[7] 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124.
[8] 胡少营 张龙琳 张文斌. 采用熟练率的服装流水线节拍设计模型[J]. 纺织学报, 2015, 36(05): 133-138.
[9] 朱秀丽;杭小刚;吴春胜. 服装生产台产量的学习曲线及应用[J]. 纺织学报, 2007, 28(7): 125-128.
[10] 李敏;石旭光. 基于时间竞争的服装生产工艺与组织方式[J]. 纺织学报, 2007, 28(6): 123-127.
[11] 李国富;叶飞帆;徐雪鸿. 服装企业集群敏捷客户化制造研究[J]. 纺织学报, 2006, 27(6): 116-120.
[12] 李克兢;崔世忠. 模块化服装快速生产设计系统的开发[J]. 纺织学报, 2006, 27(1): 50-53.
[13] 李重;胡觉亮;吴庆标. 服装生产流水线的计算机仿真[J]. 纺织学报, 2005, 26(4): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!