纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 166-172.doi: 10.13475/j.fzxb.20181006107

• 管理与信息化 • 上一篇    下一篇

基于碳排放核算的涤纶低弹丝生产工艺优化

邵景峰1(), 马创涛1, 王蕊超1, 袁玉楼2, 王希尧1, 牛一凡1   

  1. 1.西安工程大学 管理学院, 陕西 西安 710048
    2.咸阳纺织集团有限公司, 陕西 咸阳 712000
  • 收稿日期:2018-10-31 修回日期:2018-11-16 出版日期:2019-02-15 发布日期:2019-02-01
  • 作者简介:邵景峰(1980—), 男, 博士, 副教授。主要研究方向为纺织过程控制。 E-mail: shaojingfeng1980@aliyun.com
  • 基金资助:
    陕西省重点研发计划资助项目(2017GY-39);“纺织之光”应用基础研究资助项目(J201508);陕西省教育厅服务地方科学研究资助项目(16JF009);中国纺织工业联合会指导性计划资助项目(2016076);中国纺织工业联合会指导性计划资助项目(2018089);西安市科技局科技计划项目(2017074CG/RC037XAGC005)

Polyester drawn textured yarn production process optimization based on carbon emission accounting

SHAO Jingfeng1(), MA Chuangtao1, WANG Ruichao1, YUAN Yulou2, WANG Xiyao1, NIU Yifan1   

  1. 1. School of Management, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xianyang Textile Group Co., Ltd., Xianyang, Shaanxi 712000, China
  • Received:2018-10-31 Revised:2018-11-16 Online:2019-02-15 Published:2019-02-01

摘要:

针对差别化纤维生产过程中因忽视动态能耗而导致其生产工艺尚未合理优化的问题,首先对差别化纤维生产过程的工艺及能耗问题进行了分析,并将碳足迹引入到能耗计量与核算过程中,构建了一种基于碳排放足迹的差别化纤维生产过程能耗分析与计量模型;然后以涤纶低弹丝的加弹工艺为对象,从能源碳消耗、物料碳消耗以及工艺碳排放等方面入手,设计了涤纶低弹丝生产过程碳排放函数,并构建了基于碳排放函数的涤纶低弹丝生产工艺优化模型;最后根据涤纶低弹丝工艺数据,对工艺优化模型进行了算例分析及求解。结果表明,该模型优化了差别化纤维生产过程的关键工艺参数,并使碳排放量降低13.35%。

关键词: 涤纶低弹丝, 工艺优化, 差别化纤维, 碳排放函数

Abstract:

In order to solve the problem of no reasonable optimization of the production process due to the overlooking dynamic energy consumption in the differential fiber production process, the production process and energy consumption of the differential fiber production process were firstly analyzed, and the energy consumption metering and accounting model based on carbon footprint was built. Then, the carbon emission function based on green low carbon was designed based on the energy carbon consumption, material carbon consumption and process carbon consumption. Furthermore, the polyester low elastic production was selected as the research object, and a process optimization model of the polyester low elastic filament based on carbon emission accounting was designed. Finally, on the basis of historical data, the process optimization model was solved. The results show that the model optimizes the key process parameters of the differential fiber production process, and the carbon emission of the polyester low elastic filament production decreases by 13.35%.

Key words: polyester low elastic filament, process optimization, differential fiber, carbon emission function

中图分类号: 

  • TQ340.69

图1

基于碳足迹的涤纶低弹丝生产过程能耗计量模型"

图2

涤纶低弹丝加弹的工艺流程"

表1

涤纶低弹丝加弹工艺实验因子区间"

编号 因子名称 区间下限 区间上限
1 油轮转速Vo /(r·min-1) 0.3 0.8
2 油尺高度Ho /mm 180 280
3 加工速度Sm /(m·min-1) 550 750
4 变形热箱温度Tf /℃ 170 185
5 定型热箱温度Ts /℃ 140 155

表2

线性变换后的实验因子水平编码表"

编号 因子名称 水平编码
-1 0 1
1 油轮转速Vo /(r·min-1) 0.3 0.55 0.8
2 油尺高度Ho /mm 180 230 280
3 加工速度Sm /(m·min-1) 550 650 750
4 变形热箱温度Tf / ℃ 170 177.5 185
5 定型热箱温度Ts /℃ 140 147.5 155

表3

涤纶低弹丝生产过程中碳排放系数"

名称 单位 数值 说明
电能碳排放系数fe kg/(kW·h) 0.977 西北地区电碳排放系数
油剂碳排放系数fo kg/L 0.047 以白油为对象进行核算
油剂废气碳排放系数fg kg/m3 0.5 以挥发性有机物为对象

表4

加弹工艺中的电能消耗参数"

设备 功率/
kW
设备台数/发
热丝条数
电能消耗
量/(kW·h)
加弹机电动机 118 1 118
变形发热丝 4 20 80
定型发热丝 2.4 10 24
空压机电动机 18.5 1 18.5
引风机电动机 5.5 1 5.5

图3

残差分布图"

图4

响应曲面分析结果"

表5

优化工艺参数值"

工艺参数名称 优化后的工艺参数值
油轮转速Vo / (r·min-1) 0.55
油尺高度Ho / mm 230
加工速度Sm / (m·min-1) 650
变形热箱温度Tf / ℃ 177.5
定型热箱温度Ts / ℃ 147.5
[1] KHAYYAM H, NAEBE M, BAB-HADIASHAR A, et al. Stochastic optimization models for energy management in carbonization process of carbon fiber production[J]. Applied Energy, 2015,158(31):643-655.
[2] RAILEANU S, ANTON F, IATAN A, et al. Resource scheduling based on energy consumption for sustainable manufacturing[J]. Journal of Intelligent Manufacturing, 2017,28(7):1519-1530.
[3] WANG Yi, DING Yongsheng, HAO Kuangrong, et al. Performance prediction of differential fibers with a bi-directional optimization approach[J]. Materials, 2013,6(12):5967-5985.
doi: 10.3390/ma6125967 pmid: 28788433
[4] KIYONO C Y, SILVA E C N, REDDY J N. A novel fiber optimization method based on normal distribution function with continuously varying fiber path[J]. Composite Structures, 2017,160:503-515.
[5] 邓志文. 差别化纤维梳理和质量控制的新思路[J]. 辽东学院学报(自然科学版), 2018,25(1):16-23.
DENG Zhiwen. New thinking on carding and quality control of differential fiber[J]. Journal of Liaodong University(Natural Sciences), 2018,25(1):16-23.
[6] 高菁. 甲壳素纤维天丝精梳长绒棉混纺纱的生产实践[J]. 轻纺工业与技术, 2016,45(3):8-10.
GAO Jing. Production practice of the long-staple cotton blended yarn for polysaccharide chitin fibre[J]. Qingfang Gongye Yu Jishu, 2016,45(3):8-10.
[7] 刘梦雨. 清梳联纺差别化纤维降低棉结的技术探讨[J]. 辽东学院学报(自然科学版), 2015,22(3):172-174.
LIU Mengyu. Technology of reducing neps in differential fiber of blow-card spinning[J]. Journal of Liaodong University(Natural Sciences), 2015,22(3):172-174.
[8] 刘笑莹, 方斌, 朱守艾, 等. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017,38(1):35-39.
LIU Xiaoying, FANG Bin, ZHU Shouai, et al. Low-loss optimization of cotton/hemp blending process[J]. Journal of Textile Research, 2017,38(1):35-39.
[9] 孙成龙, 李振瀚, 张玉明, 等. 基于机床反馈数据和工艺知识的进给速度优化[J]. 机械制造, 2017,55(9):76-80.
SUN Chenglong, LI Hanyu, ZHANG Yuming, et al. Optimization method for feed rate of machine tool based on the feedback data and technical knowledge[J]. Machinery, 2017,55(9):76-80.
[10] 舒服华. 基于灰色关联的针刺涤纶防水胎基工艺参数优化[J]. 产业用纺织品, 2017,35(3):32-38.
SHU Fuhua. Optimization of process parameters of needling polyester water proof membrane base by means of grey correlation[J]. Technical Textiles, 2017,35(3):32-38.
[11] 郭春花. 立足前沿明晰未来[J]. 纺织服装周刊, 2016,18(23):24-25.
GUO Chunhua. Clarify future based on frontier technology Textile[J]. Textile Apparel Weekly, 2016,18(23):24-25.
[12] 王来力, 丁雪梅, 吴雄英. 纺织产品碳足迹研究进展[J]. 纺织学报, 2013,34(6):113-119.
WANG Laili, DING Xuemei, WU Xiongying. Research progress of textile carbon footprint[J]. Journal of Textile Research, 2013,34(6):113-119.
[13] NIGAM M, MANDADE P, CHANANA B, et al. Energy consumption and carbon footprint of cotton yarn production in textile industry[J]. International Archive of Applied Sciences and Technology, 2016,7(1):6-12.
[14] 李一, 王君涛, 王来力. 牛仔裤工业碳足迹核算与评价示范[J]. 现代纺织技术, 2017,25(6):58-61.
LI Yi, WANG Juntao, WANG Laili. Demonstration of carbon footprint assessment of jean industry[J]. Advanced Textile Technology, 2017,25(6):58-61.
[15] 童庆蒙, 沈雪, 张露, 等. 基于生命周期评价法的碳足迹核算体系:国际标准与实践[J]. 华中农业大学学报(社会科学版), 2018,188(1):46-57,158.
TONG Qingmeng, SHEN Xue, ZHANG Lu, et al. Calculation system for carbon footprint based on evaluate method of the lifecycle: international standard and practice[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018,188(1):46-57,158.
[16] 潘鑫. 求解黑箱函数全局优化问题的组合响应面法[J]. 高等学校计算数学学报, 2014,36(4):313-326.
PAN Xin. A combinational response surface method for optimization of black box functions[J]. Numerical Mathematics A Journal of Chinese Universities, 2014,36(4):313-326.
[17] TIAN Youquan, LIU Qiong. The Study about the calculation method of product carbon footprint during the flow manufacturing process[J]. Journal of Low Carbon Economy, 2014,3(1):1-6.
[18] 李青青, 苏颖, 尚丽, 等. 国际典型碳数据库对中国碳排放核算的对比分析[J]. 气候变化研究进展, 2018,14(2):1-6.
LI Qingqing, SU Ying, SHANG Li, et al. Comparison analysis of China's emissions accounting by typical international carbon databases[J]. Progressus Inquisitiones DE Mutatione Climatis, 2018,14(2):1-6.
[1] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[2] 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39.
[3] 钟博文 武宗文 刘新刚. 冷转移印花生产工艺的优化与技术进展[J]. 纺织学报, 2015, 36(02): 133-140.
[4] 倪春锋 于勤 高卫东 王鸿博 . 基于精梳毛纺系统的超短羊绒纯纺梳毛工艺与优化[J]. 纺织学报, 2013, 34(12): 28-0.
[5] 季涛, 李杰, 高强, 余进, 刘其霞. 粘胶基炭化织物的制备及工艺优化[J]. 纺织学报, 2012, 33(4): 49-54.
[6] 薛卫巍;翟秋梅;薛永常;郑来久. 罗布麻微生物脱胶工艺优化[J]. 纺织学报, 2009, 30(04): 80-84.
[7] 吴辉.;钱国坻;华兆哲.;阎贺静.;张朝晖;堵国成.;陈坚.. 新型碱性果胶酶用于棉针织物精练的工艺优化[J]. 纺织学报, 2008, 29(5): 59-63.
[8] 赵书林;王恩清;郭会勇. 基于因子分析的纺纱工艺优化[J]. 纺织学报, 2007, 28(8): 35-38.
[9] 吴绥菊;季晓雷;钱庆雨. 赛络纺棉/氨纶包芯纱工艺探讨[J]. 纺织学报, 2006, 27(3): 80-82.
[10] 杨元兆;章友鹤. 精梳纱质量提高及其产品开发探讨[J]. 纺织学报, 2004, 25(06): 94-97.
[11] 吴小琴;王府梅. 差别化纤维织物蓬松丰满度的预测[J]. 纺织学报, 2003, 24(05): 33-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!