纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 183-188.doi: 10.13475/j.fzxb.20180405806

• 综合述评 • 上一篇    

通风服热舒适性研究现状与展望

赵蒙蒙1, 柯莹2, 王发明3, 李俊4,5()   

  1. 1.上海工程技术大学 服装学院, 上海 201620
    2.江南大学 纺织服装学院, 江苏 无锡 214122
    3.香港理工大学 纺织及服装学系, 香港 999077
    4.东华大学 服装与艺术设计学院, 上海 200051
    5.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2018-04-25 修回日期:2018-11-27 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 李俊
  • 作者简介:赵蒙蒙(1985—),女,副教授,博士。主要研究方向为服装工效与生理学。
  • 基金资助:
    国家自然科学基金青年基金项目(51506076);教育部人文社会科学研究一般项目青年项目(17YJC760120);闽江学院现代服装技术协同创新中心开放基金项目(MJKFFZ201702)

Research and development trend of ventilation clothing thermal comfort

ZHAO Mengmeng1, KE Ying2, WANG Faming3, LI Jun4,5()   

  1. 1. Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
    2. College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
    4. College of Fashion and Design, Donghua University, Shanghai 200051, China
    5. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-04-25 Revised:2018-11-27 Online:2019-03-15 Published:2019-03-15
  • Contact: LI Jun

摘要:

为揭示通风服对人体热舒适影响的机制,阐明通风服与人体之间的热湿传递关系,在介绍通风服的起源和工作原理的基础上,通过对国内外相关研究成果的分析和总结,重点论述了通风服热舒适性的研究方法:出汗暖体假人测试法、人体着装实验法和数值模型构建法,并分析了各种方法的优缺点。结果表明,通风服对人体热舒适的影响机制是一门集环境传热学、人体生理传热学、服装面料学以及流体力学交叉结合的工程问题。最后对通风服热舒适性研究进行了展望,认为未来将在通风服衣下气流的精确测量与仿真,衣下气流和热流数值模型的构建以及通风引起的局部和整体热舒适不匀等方面开展研究。

关键词: 通风服, 热舒适性, 暖体假人, 真人着装

Abstract:

In order to reveal the mechanism of the ventilation clothing thermal comfort and explain the relationship of the heat and mass transfer between the ventilation clothing and the human body, the paper first introduced the origin and the working principle of the ventilation clothing and then explained the studying methods of the ventilation clothing thermal comfort by analyzing and concluding related researches of home and abroad. The studying methods included sweating thermal manikin measurements, human trials and mathematic models. The advantages and disadvantages of these studying methods were discussed. Results show that the mechanism of the thermal comfort of the ventilation clothing is an interdisciplinary engineering issue integrating environmental heat transfer, human physiological heat transfer, textile and clothing heat transfer and fluid dynamics. Finally, the paper prospected future researches of the ventilation clothing. Future researches will include accurate measurements of the air flow, the construction of the numerical models and the local and overall thermal comfort caused by the ventilation, etc.

Key words: ventilation clothing, thermal comfort, sweating thermal manikin, human trial

中图分类号: 

  • TS941.731

图1

通风服示意图"

图2

人体-通风服传热系统"

图3

采用示踪气体法测量服装局部通风"

图4

织物纤维通风传热模型 L表示织物长度;W表示织物宽度。"

图5

人体-服装-热生理模型 Tskin为人体皮肤温度;Tcore为人体核心温度;Tskin,local为人体皮肤局部区段温度。"

[1] 祁新华, 程煜, 郑雪梅, 等. 国内高温热浪研究进展及其人文转向[J]. 亚热带资源与环境学报, 2017,12(1):26-31.
QI Xinhua, CHENG Yu, ZHENG Xuemei, et al. Heat waves research: its progress and human dimension turning in China[J]. Journal of Subtropical Resources and Environment, 2017,12(1):26-31.
[2] KJELLSTROM T, HOLMER I, LEMKE B. Workplace heat stress, health and productivity: an increasing challenge for low and middle-income countries during climate change[J]. Global Health Action, 2009,2(1):46-51.
[3] NUNNELEY S A. Heat stress in protective clothing: interactions among physical and physiological factors[J]. Scandinavian Journal of Work, Environment & Health, 1989,15:52-57.
pmid: 2692140
[4] HOLMER I. Protective clothing and heat stress[J]. Ergonomics, 1995,38:166-182.
doi: 10.1080/00140139508925093 pmid: 7875118
[5] 任雨婷, 端木林, 金权. 基于等效温度的工位空调环境下热舒适区研究[J]. 暖通空调, 2016,46(5):101-107.
REN Yuting, DUAN Mulin, JIN Quan. Thermal comfort zone study based on equivalent temperature under task air conditioning system[J]. Heating Ventilating & Air Conditioning, 2016,46(5):101-107.
[6] 王月梅, 连之伟. 胸部送风工位空调下的吹风感实验研究[J]. 建筑热能通风空调, 2016,35(8):1-5.
WANG Yuemei, LIAN Zhiwei. Experimental study on the draft of the task ambient air conditioning with chest exposure[J]. Building Energy & Environment, 2016,35(8):1-5.
[7] 郭爽, 赵敬德, 李林林, 等. 稳态环境下个体送风人体热舒适数值模拟[J]. 建筑热能通风空调, 2016,35(7):29-32.
GUO Shuang, ZHAO Jingde, LI Linlin, et al. Numerical simulation study on thermal comfort of human body with personalized ventilation in steady situ-ation[J]. Building Energy & Environment, 2016,35(7):29-32.
[8] XU X, GONZALEZ J. Determination of the cooling capacity for body ventilation system[J]. European Journal of Applied Physiology, 2011,111(12):3155-3160.
doi: 10.1007/s00421-011-1941-0 pmid: 21455613
[9] 李珩, 邱义芬, 姜南, 等. 通风温度对全身通风服热防护性能影响研究[J]. 航天医学与医学工程, 2014,27(3):205-209.
LI Yan, QU Yifen, JIANG Nan, et al. Effects of ventilation temperature on thermal protection performance of general ventilation garment[J]. Space Medicine and Medical Engineering, 2014,27(3):205-209.
[10] 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007,28(6):100-105.
ZENG Yanzhang, DENG Zhongshan, LIU Jing. Micro-fan-array system enabled air conditioning suit for cooling human body[J]. Journal of the Textile Research, 2007,28(6):100-105.
[11] ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013,43:232-237.
[12] LU Y, WEN F, LAI D, et al. A novel personal cooling system (PCS) incorporated with phase change mater-ials (PCMs) and ventilation fans: an investigation on its cooling efficiency[J]. Journal of Thermal Biology, 2015,52:137-14.
doi: 10.1016/j.jtherbio.2015.07.002 pmid: 26267508
[13] YI W, ZHAO Y, CHAN APC. Evaluation of the ventilation unit for personal cooling system (PCS)[J]. International Journal of Industrial Ergonomics, 2017,58:62-68.
[14] WANG F, SONG W. An investigation of thermophysiological responses of human while using four personal cooling strategies during heat waves[J]. Journal of Thermal Biology, 2017,70:37-44.
pmid: 29074024
[15] HADID A, YANOVICH R, ERLICH T, et al. Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest[J]. European Journal of Applied Physiology, 2008,104:311-319.
doi: 10.1007/s00421-008-0716-8 pmid: 18415120
[16] CHINEVERE T, CADARETTE B, GOODMAN D, et al. Efficacy of body ventilation system for reducing strain in warm and hot climates[J]. European Journal of Applied Physiology, 2008,103(3):307-314.
pmid: 18327605
[17] SONG W, WANG F, WEI F. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment[J]. Building and Environment, 2016,100:92-101.
[18] CHAN A P, ZHANG Y, WANG F, et al. A field study of the effectiveness and practicality of a novel hybrid personal cooling vest worn during rest in Hong Kong construction industry[J]. Journal of Thermal Biology, 2017,70:21-27.
doi: 10.1016/j.jtherbio.2017.07.012 pmid: 29074022
[19] CHAN A P, YANG Y, SONG W. Evaluating the usability of a commercial cooling vest in the Hong Kong industries[J]. International Journal of Occupational Safety and Ergonomics, 2018,24(1):73-81.
doi: 10.1080/10803548.2017.1282237 pmid: 28100117
[20] SUN Y, JASPER W. Numerical modeling of heat and moisture transfer in a wearable convective cooling system for human comfort[J]. Building and Environment, 2015,93:50-62.
[21] ISMAIL N, GHADDAR N, GHALI K. A clothing ventilation and heat loss electric circuit model with natural convection for a clothed swinging arm of a walking human[J]. Heat Transfer Engineering, 2019,40(3/4):330-345.
[22] ISMAIL N, GHADDAR N, GHALI K. Effect of inter-segmental air exchanges on local and overall clothing ventilation[J]. Textile Research Journal, 2016,86(4):423-439.
[23] HAVENITH G, ZHANG P, HATCHER K. Comparison of two tracer gas dilution methods for the determination of clothing ventilation and of vapor resistance[J]. Ergonomics, 2010,53(4):548-558.
doi: 10.1080/00140130903528152 pmid: 20309750
[24] UEDA H, INOUE Y, MATSUDAIRA M. Regional microclimate humidity of clothing during light work as a result of the interaction between local sweat production and ventilation[J]. International Journal of Clothing Science and Technology, 2006,18(3/4):225-234.
[25] 柯莹, HAVENITH G, 李俊. 等. 服装整体及其局部的通风测量方法[J]. 纺织学报, 2014,35(7):134-139.
KE Ying, HAVENITH G, LI Jun, et al. Method for measuring whole and local clothing ventilation[J]. Journal of Textile Research, 2014,35(7):134-139.
[26] HENRY P S H. Diffusion in absorbing media[J]. Mathematical and Physical Sciences, 1939,171A:215-241.
[27] FARNWORTH B. A numerical model of the combined diffusion of heat and water vapor through clothing[J]. Textile Research Journal, 1986,56:653-664.
[28] LI Y, HOLCOMBLE B V. A two-stage sorption model of the coupled diffusion into hygroscopic fabric during humidity transients[J]. Journal of The Textile Institute, 1992,62(4):211-217.
[29] GHALI K, GHADDAR N, JONES B. Modeling of heat and moisture transport by periodic ventilation of thin cotton fibrous media[J]. International Journal of Heat and Mass Transfer, 2002,45:3703-3714.
[30] SANTOS M S, OLIVERIRA D, CAMPOS J B L M, et al. Numerical analysis of the flow and heat transfer in cylindrical clothing microclimates-influence of the microclimate thickness ration[J]. International Journal of Heat and Mass Transfer, 2018,117:71-79.
[31] PENNES H H. Analysis of tissue and arterial blood temperature in the resting forearm[J]. Journal of Applied Physiology, 1948,1:93-122.
pmid: 18887578
[32] GAGGE A P, STOLWIJK J A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions 1971,77(1):247-62.
[33] TABABE S, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Buildings, 2002,34:637-46.
[34] HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[J]. Comprehensive Physiology, 2016(6):255-302.
[1] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[2] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[3] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[4] 邓辉 师云龙 胡源盛 钱晓明 范金土. 开放式局部热阻测试系统的实现[J]. 纺织学报, 2018, 39(09): 127-133.
[5] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[6] 师云龙 钱晓明 梁肖肖 张文欢 邓辉 王立晶 范金土 . 仿人体出汗比例的 Walter 暖体假人皮肤制备[J]. 纺织学报, 2018, 39(05): 103-107.
[7] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[8] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[9] 段杏元 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
[10] 郭晓芳 刘文娟. 巴尔虎蒙古袍的热舒适性能[J]. 纺织学报, 2016, 37(01): 123-126.
[11] 李佳怡 卢业虎 王发明 孙艳娇 王喆 朱敏. 应用男体出汗图谱的运动装设计与性能评价[J]. 纺织学报, 2016, 37(01): 116-122.
[12] 林雪 王云仪 李俊. 藏袍的非对称式隔热对人体热舒适的影响[J]. 纺织学报, 2014, 35(4): 105-0.
[13] 李俊 何佳臻 王云仪. 常用高温及低温防护服隔热性能的对比[J]. 纺织学报, 2013, 34(10): 121-0.
[14] 王毅 王铭 邹钺 李书政 刘赟. 暖体假人表面温度的均匀性[J]. 纺织学报, 2012, 33(10): 113-116.
[15] 汪秀清;张昌;高猛. 单向导汗织物的热舒适性[J]. 纺织学报, 2010, 31(10): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!