纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 47-54.doi: 10.13475/j.fzxb.20210405508

• 纺织工程 • 上一篇    下一篇

基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析

马莹1, 刘岳岩1, 赵洋1,2, 陈翔1, 禄盛1,2(), 胡瀚杰3   

  1. 1.重庆邮电大学 先进制造工程学院, 重庆 400065
    2.西安交通大学 机械结构强度与振动国家重点实验室, 陕西 西安 710049
    3.重庆交通大学绿色航空技术研究院, 重庆 401120
  • 收稿日期:2021-04-20 修回日期:2021-07-20 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 禄盛
  • 作者简介:马莹(1985—),女,副教授,博士。主要研究方向为织物结构及其力学性能。
  • 基金资助:
    国家自然科学基金青年科学基金项目(12002070);重庆市留学人员回国创业创新项目(cx2018126);重庆市教育委员会科学技术研究项目(KJQN201900632)

Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry

MA Ying1, LIU Yueyan1, ZHAO Yang1,2, CHEN Xiang1, LU Sheng1,2(), HU Hanjie3   

  1. 1. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
    3. The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, China
  • Received:2021-04-20 Revised:2021-07-20 Published:2022-04-15 Online:2022-04-20
  • Contact: LU Sheng

摘要:

为研究芳纶平纹织物纱线抽拔力学性能及各参数的影响规律,建立纱线抽拔数学模型,为后续数值模型提供理论基础。采用数字单元法模拟芳纶平纹织物织造过程,获得其微观几何模型,并计算得出纱线轮廓。在此基础上,使用ABAQUS模拟单纱抽拔过程,建立纱线厚度方向单层网格划分准则和纱线材料属性,获得横向预紧力、纱线间摩擦因数对纱线抽拔力学性能的影响规律及能量转换机制。结果表明:仿真所得抽拔力峰值和横向预紧力峰值与实验值仅差5.96%和-8.51%,外力做功主要通过摩擦耗散;随着横向预紧力和纱线间摩擦因数的增大,抽拔力峰值增长速度逐渐减缓,所建模型可较为准确地预测纱线抽拔性能。

关键词: 芳纶平纹织物, 微观几何模型, 纱线抽拔, 抽拔力峰值, 数字单元法

Abstract:

In order to study the mechanical properties and parametric influence of yarn pull-out from aramid plain woven fabrics, an analytical model was proposed to provide the theoretical bases for subsequent numerical modeling. The micro-geometry of the plain woven fabric was generated through weaving process simulation using the digital element approach. On this basis, the yarn pull-out behavior of a single yarn was simulated by ABAQUS. One solid element is used through the thickness of the yarn and the yarn material properties were defined. The effect of transverse pre-loading and yarn-to-yarn friction on pull-out behavior and energy transfer mechanism were obtained. The simulation results show that the differences between the simulated peak pull-out force and the peak transverse force compared to the experimental ones are 5.96% and -8.51%, respectively. The external energy is mainly dissipated in the form of frictional energy. When the transverse pre-loading and yarn-to-yarn friction coefficient increases, the growth rate of the yarn peak pull-out force gradually decreases. The proposed model is capable of predicting the yarn pull-out performance with reasonable accuracy.

Key words: aramid plain woven fabric, micro-geometry, yarn pull-out, peak pull-out force, digital element approach

中图分类号: 

  • TB332

图1

纱线抽拔装置及过程示意图"

图2

平纹织物纤维离散过程"

图3

纱线截面轮廓计算示意图"

图4

纱线表面网格计算示意图"

图5

织物表面结构和纱线截面对比图"

表1

纱线正交异性线弹性材料参数"

E11/
GPa
E22/
GPa
E33/
GPa
G12/
GPa
G13/
GPa
G23/
GPa
ν12 ν13 ν23
84 4.2 4.2 4.2 4.2 4.2 0 0 0

图6

网格划分示意图"

图7

能量-时间曲线"

图8

仿真和实验抽拔力-位移曲线"

图9

仿真和实验预紧力-位移曲线"

图10

横向预紧力对抽拔力的影响"

表2

各摩擦因数下的峰值线性拟合"

横向预紧力/N 摩擦因数 斜率k 截距 b
100 0.10 -0.071 08 0.925 19
0.15 -0.092 60 1.261 49
0.20 -0.124 43 1.684 30
200 0.10 -0.089 83 1.201 42
0.15 -0.122 35 1.681 81
0.20 -0.177 31 2.337 95
300 0.10 -0.103 80 1.427 54
0.15 -0.151 86 2.059 79
0.20 -0.212 70 2.806 47

图11

摩擦因数对纱线抽拔力的影响"

[1] 练军, 顾伯洪, 王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8): 109-112.
LIAN Jun, GU Bohong, WANG Shanyuan. Ballistic impact properties of the fabric and its composite laminates[J]. Journal of Textile Research, 2006, 27(8): 109-112.
[2] KIRKWOOD K M, KIRKWOOD J E, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2:part I: quasi-static characterization of yarn pull-out[J]. Textile Research Journal, 2004, 74(10): 920-928.
doi: 10.1177/004051750407401012
[3] KIRKWOOD J E, KIRKWOOD K M, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2 fabric:part II: prediction of ballistic performance[J]. Textile Research Journal, 2004, 74(11): 939-948.
doi: 10.1177/004051750407401101
[4] NILAKANTAN G, GILLESPIE J W. Yarn pull-out behavior of plain woven Kevlar fabrics: effect of yarn sizing,pull-out rate,and fabric pre-tension[J]. Composite Structures, 2013, 101(15): 215-224.
doi: 10.1016/j.compstruct.2013.02.018
[5] ZHU D J, SORANAKOM C, MOBASHER B, et al. Experimental study and modeling of single yarn pull-out behavior of Kevlar®49 fabric[J]. Composites Part A: Applied Science and Manufacturing, 2012, 42(7): 868-879.
doi: 10.1016/j.compositesa.2011.03.017
[6] BAI R X, MA Y, LEI Z K, et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 1-14.
[7] DONG Z X, SUN C T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1863-1869.
doi: 10.1016/j.compositesa.2009.04.019
[8] BILISIK K, KORKMAZ M. Multilayered and multidirectionally-stitched aramid woven fabric structures: experimental characterization of ballistic performance by considering the yarn pull-out test[J]. Textile Research Journal, 2010, 80(16): 1697-1720.
doi: 10.1177/0040517510365954
[9] BILISIK K, KORKMAZ M. Single and multiple yarn pull-outs on aramid woven fabric structures[J]. Textile Research Journal, 2010, 81(8): 847-864.
doi: 10.1177/0040517510391703
[10] BILISIK K. Properties of yarn pull-out in para-aramid fabric structure and analysis by statistical model[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1930-1942.
doi: 10.1016/j.compositesa.2011.08.018
[11] BILISIK K, YOLACAN G. Single and multiple yarn pull-out on E-glass woven fabric structures[J]. Textile Research Journal, 2011, 81(19): 2043-2055.
doi: 10.1177/0040517511414976
[12] BILISIK K. Experimental determination of fabric shear by yarn pull-out method[J]. Textile Research Journal, 2011, 82(10):1050-1064.
doi: 10.1177/0040517511431318
[13] VALIZADEH M, LOMOV S. Finite element simulation of a yarn pullout test for plain woven fabrics[J]. Textile Research Journal, 2010, 80(10): 892-903.
doi: 10.1177/0040517509346436
[14] NILAKANTAN G. Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies[J]. Composite Structures, 2013, 104: 1-13.
doi: 10.1016/j.compstruct.2013.04.001
[15] SORBO P D, GIRARDOT J, DAU F, et al. Numerical investigations on a yarn structure at the microscale towards scale transition[J]. Composite Structures, 2018, 183: 489-498.
doi: 10.1016/j.compstruct.2017.05.018
[16] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.
doi: 10.1016/S0266-3538(00)00223-2
[17] ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2): 239-244.
doi: 10.1016/S0266-3538(03)00258-6
[18] MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites: micro-geometry[J]. Composites Science and Technology, 2008, 68(7/8): 1671-1678.
doi: 10.1016/j.compscitech.2008.02.018
[19] HUANG L, WANG Y, MIAO Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures, 2013, 106(12): 417-425.
doi: 10.1016/j.compstruct.2013.05.057
[20] GREEN S D, LONG A C, SAID B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756.
doi: 10.1016/j.compstruct.2013.10.015
[21] ISART N, SAID B, IVANOV D, et al. Internal geometric modelling of 3D woven composites: a comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
doi: 10.1016/j.compstruct.2015.07.007
[22] WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5): 552-560.
doi: 10.1016/j.ijimpeng.2009.10.009
[23] WANG Y, MIAO Y, HUANG L, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78.
doi: 10.1016/j.ijimpeng.2016.06.007
[24] ZHU D J, MOBASHER B, RAJAN S D. Dynamic tensile testing of Kevlar 49 fabrics[J]. Journal of Materials in Civil Engineering, 2010, 23(3): 230-239.
doi: 10.1061/(ASCE)MT.1943-5533.0000156
[25] BAI R X, MA Y, LEI Z K, et al. Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test[J]. Composites Part B: Engineering, 2019, 174: 1-11.
[26] GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements: 3D simulations versus biaxial tests[J]. Computation Materials Science, 2000, 17(1): 7-20.
doi: 10.1016/S0927-0256(99)00086-5
[1] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!