纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 36-44.doi: 10.13475/j.fzxb.20220905401

• 纤维材料 • 上一篇    下一篇

新疆单根长绒棉纤维力学特性及断裂形态分析

马承诺1,2, 姜开翔1,2, 陈春晖1,2, 刘园玲1,2, 张有强1,2()   

  1. 1.塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
    2.塔里木大学 新疆维吾尔自治区教育厅普通高等学校现代农业工程重点实验室, 新疆 阿拉尔 843300
  • 收稿日期:2022-09-20 修回日期:2023-03-23 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 张有强(1980—),男,教授,博士。主要研究方向为机械系统摩擦学。E-mail:zhangyqlzjd@126.com
  • 作者简介:马承诺(1996—),女,硕士生。主要研究方向为棉纤维拉伸及断裂力学行为。
  • 基金资助:
    国家自然科学基金项目(12262034);兵团财政科技计划资助项目(2021CB036);塔里木大学校长基金创新研究团队项目(TDZKCX202202)

Analysis on mechanical properties and fracture morphology of Xinjiang long-staple cotton fiber

MA Chengnuo1,2, JIANG Kaixiang1,2, CHEN Chunhui1,2, LIU Yuanling1,2, ZHANG Youqiang1,2()   

  1. 1. College of Mechanical and Electrical Engineering, Tarim University, Alar, Xinjiang 843300, China
    2. Key Laboratory of Modern Agricultural Engineering of Colleges and Universities, Department of Education of Xinjiang Uygur Autonomous Region, Tarim University, Alar, Xinjiang 843300, China
  • Received:2022-09-20 Revised:2023-03-23 Published:2024-02-15 Online:2024-03-29

摘要:

针对新疆长绒棉在机采及加工过程中受到机械拉伸导致纤维断裂损伤的问题,首先,通过试验分析纤维直径、试样长度和拉伸速度对单根长绒棉纤维力学特性和形态变化的影响规律;其次,通过响应面法分析并建立 3种因素交互作用的响应面回归模型,得到3种因素交互作用对单根长绒棉纤维力学特性的影响规律;最后,借助扫描电子显微镜对不同断裂方式的棉纤维断口形貌进行观察与分析。结果表明:当试样长度和拉伸速度一定时,随着单根长绒棉纤维直径的增大,断裂强力逐渐减小,纤维表面形态变化差异较大;当纤维直径一定时,单根长绒棉纤维断裂强力随着拉伸速度的增大而增大,随着试样长度的增加而减小;单根长绒棉纤维力学特性不仅受上述 3种因素的单一影响,受其交互作用的影响也较为显著,影响顺序依次为纤维直径、拉伸速度、试样长度;在低载荷下,单根长绒棉纤维断裂伸长率与拉伸速度没有较大关系,但其随试样长度的增加而增加;新疆单根长绒棉纤维在拉伸过程中力学特性曲线表现为直接断裂和逐渐断裂2种类型,主要原因依赖于棉纤维初始形态和缺陷程度,其拉伸形态变化归纳为纵向微原纤分裂且在纤维内传播,断裂方式具有直接断裂、轴向撕裂、扭转断裂和纤维丝间滑移。

关键词: 单根长绒棉纤维, 力学特性, 断裂机制, 断口形貌, 新疆棉

Abstract:

Objective The paper aims to reduce the mechanical damage of long staple cotton caused by during mechanical processing. Exploring the changes of physical properties and morphological transition under different mechanical process parameters.

Method The tensile test of long-staple cotton fiber was conducted on tensile tester,and the mechanical properties and morphological changes of fiber samples during the tensile process were analyzed. The test temperature was (21±2) ℃ and the relative humidity was (65±5)%. The influence of fiber diameter, specimen length and tensile speed on the mechanical properties and morphological changes was investigated using a single factor method. The response surface regression model of the interaction of three factors was analyzed and established by the response surface method. The morphology of cotton fiber fractures with different fracture methods was analyzed by scanning electron microscopy.

Results The breaking strength decreased gradually with increasing diameter when the length and tensile speed of cotton fibers remain unchanged. It was found that the diameter and surface morphology are related to the maturity of the fibers, the breaking strength increased with the increasing tensile speed for the same diameter, and minor defects appeared along the tensile direction. As the load further increases, the cracks gradually growth due to a large number of defects accumulated and leading to fiber breakage. The tensile speed and length of fiber have a great influence on the fracture strength, the breaking strength of fiber increases with the increase of tensile speed while decreases with the increase of length. The breaking strength is 38.48 mN for the length of 1 mm and tensile speed of 2 μm/s, and 52.63 mN for the speed of 6 μm/s. The mechanical properties of fibers affected by the three factors mentioned above, and the interaction of them in the order of fiber diameter > tensile speed > sample length. When the load is small during the stretching process, the break elongation and tensile speed of fibers did not have much effect, but both of them increased as the sample length increasing. Furthermore, the two forms of breakage of cotton fibers during stretching often occur. One is that the fiber tension increases with stretching and suddenly breaks when it reaches the maximum bearing tension of cotton fiber. The second is that the tensile force increases firstly to the peak value, then suddenly drop to a certain tensile force and continue for a period of time and then drop to zero. The load-tension curves of fibers showed direct and gradual fracture during stretching, which was related to the initial morphology and the degree of defects of the cotton fibers.

Conclusion The experimental results indicate that the tensile morphology changes of long-staple cotton fiber mainly presented as longitudinal microfibril splitting and propagation in the fiber, and the fracture mode included direct fracture, axial tear, torsional fracture and interfilament slip. The research results will helpful for reducing fiber damage during mechanical processing.

Key words: single long-staple cotton fiber, mechanical property, fracture mechanism, fracture morphology, Xinjiang cotton

中图分类号: 

  • TS562

图1

3根长绒棉纤维并排及硬衬盒框架胶固定示意图"

图2

可视化纤维拉伸仪拉伸部分示意图"

表1

试验因素和水平"

水平 A
纤维长度/mm
B
纤维直径/μm
C
拉伸速度/(μm·s-1)
-1 1 13.42 2
0 3 18.61 4
1 5 22.64 6

图3

单根长绒棉纤维直径频率分布图"

图4

单根长绒棉纤维直径对断裂强力的影响"

图5

不同直径下单根长绒棉纤维载荷-位移曲线"

图6

拉伸速度及试样长度对单根长绒棉纤维断裂强力的影响"

表2

响应曲面试验方案及结果"

试验号 A B C 断裂强力/mN
1 0 0 0 47.1
2 1 1 0 41.2
3 0 0 0 45.5
4 -1 0 1 43.6
5 1 0 1 36.9
6 0 0 0 43.7
7 1 0 -1 33.9
8 0 0 0 45.8
9 0 -1 1 38.5
10 -1 1 0 45.8
11 0 1 -1 36.4
12 -1 -1 0 38.4
13 -1 0 -1 34.7
14 0 0 0 44.9
15 0 -1 -1 31.3
16 1 -1 0 30.4
17 0 1 1 50.7

表3

以断裂强力为指标的方差分析"

方差源 平方和 自由度 均方 F P
模型 560.58 9 62.29 43.93 0.000 1
A 65.82 1 65.82 46.42 0.000 3
B 157.53 1 157.53 111.11 0.000 1
C 137.39 1 137.39 96.90 0.000 1
AB 2.89 1 2.89 2.04 0.196 4
AC 19.65 1 19.65 13.86 0.007 4
BC 12.60 1 12.60 8.89 0.020 5
A2 50.34 1 50.34 35.50 0.000 6
B2 31.33 1 31.33 22.10 0.002 2
C2 30.44 1 30.44 21.47 0.002 4
残差 9.93 7 1.42
失拟项 3.73 3 1.24 0.80 0.554 6
纯误差 6.20 4 1.55
总和 570.50 16

图7

多因素交互作用响应面曲线"

图8

试样长度与拉伸速度对断裂伸长率的影响"

图9

典型的2种棉纤维拉伸力学曲线"

图10

单根长绒棉纤维拉伸过程形态变化"

图11

单根长绒棉纤维断裂端形态"

[1] 田景山, 王文敏, 王聪, 等. 机械采收方式对新疆棉品质的影响[J]. 纺织学报, 2016, 37(7): 13-17.
TIAN Jingshan, WANG Wenmin, WANG Cong, et al. Influence of mechanical harvesting methods on Xinjiang cotton quality[J]. Journal of Textile Research, 2016, 37(7): 13-17.
[2] 李孝华, 王瑞霞, 王扬, 等. 新疆机采棉加工中短纤维率变化分析[J]. 中国棉花, 2021, 48(12): 28-31.
doi: 10.11963/cc20210203
LI Xiaohua, WANG Ruixia, WANG Yang, et al. Analysis of short fiber rate change in Xinjiang machine picked cotton processing[J]. China Cotton, 2021, 48(12): 28-31.
doi: 10.11963/cc20210203
[3] 张慧卿, 巴都木. 棉纤维微观结构的形成过程及对纤维性能的影响[J]. 中国纤检, 2008(6):52-55.
ZHANG Huiqing, BA Dumu. The formation process of cotton fiber microstructure and its influence on fiber properties[J]. China Fiber Inspection, 2008(6):52-55.
[4] 连素梅, 罗忻, 李朋, 等. 棉纤维微观结构及其性能概述[J]. 中国棉花, 2018, 45(4): 4-7, 23.
doi: 10.11963/1000-632X.lsmnzy.20180425
LIAN Sumei, LUO Xin, LI Peng, et al. Overview of the microstructure and properties of cotton fiber[J]. China Cotton, 2018, 45(4): 4-7, 23.
doi: 10.11963/1000-632X.lsmnzy.20180425
[5] 刘大彪, 何玉明, 胡鹏, 等. 单纤维微拉伸力学性能测试与分析[J]. 实验力学, 2012, 27(1): 61-69.
LIU Dabiao, HE Yuming, HU Peng, et al. Measurement and analysis of micro tensile mechanical properties of single fiber[J]. Experimental Mechanics, 2012, 27(1): 61-69.
[6] 张治理. 棉纤维的形成特点与其力学特性[J]. 中国纤检, 2004(12): 35-36.
ZHANG Zhili. Formation characteristics and mechanical properties of cotton fiber[J]. China Fiber Inspection, 2004(12): 35-36.
[7] 罗聪. 单纤维拉伸性能测试影响因素的分析[J]. 中国纤检, 2013(1): 60-62.
LUO Cong. Analysis of influencing factors of single fiber tensile property test[J]. China Fiber Inspection, 2013(1): 60-62.
[8] JAYNE B A. Some mechanical properties of wood fibers in tension[J]. Forest Products Journal, 1960, 10(6): 316-322.
[9] LISSEK F, HAEGER A, KNOBLAUCH V, et al. Acoustic emission for interlaminar toughness testing of CFRP: evaluation of the crack growth due to burst analysis[J]. Composites Part B: Engineering, 2018, 136(1): 55-62.
doi: 10.1016/j.compositesb.2017.10.012
[10] 黄淑珍. 扫描电镜下棉纤维的断裂形态[J]. 中国纤检, 1982(3): 19-25.
HUANG Shuzhen. Fracture morphology of cotton fiber under scanning electron microscope[J]. China Fibre Inspection, 1982(3): 19-25.
[11] 杨序纲, 孙文奇. 纤维的形变和断裂:Ⅱ:棉纤维拉伸形变和断裂的形态学和机理[J]. 东华大学学报, 1989, 15(4): 27-33.
YANG Xugang, SUN Wenqi. Fiber deformation and fracture: Ⅱ: morphology and mechanism of tensile deformation and fracture of cotton fiber[J]. Journal of Donghua University, 1989, 15(4): 27-33.
[12] 李繁亭, 程正迪, 张瑜. 纤维的断裂过程和机理[J]. 上海纺织工学院学报, 1980(3): 109-124.
LI Fanting, CHENG Zhengdi, ZHANG Yu. Fracture process and mechanism of fiber[J]. Journal of Shanghai Institute of Textile Technology, 1980(3): 109-124.
[13] 刘鹏飞, 郑津洋, 陶伟明, 等. 伴随纤维断裂的界面分离能的研究[J]. 自然科学进展, 2006, 16(9): 1087-1092.
LIU Pengfei, ZHENG Jinyang, TAO Weiming, et al. Research on interfacial separation energy accompanying fiber fracture[J]. Progress in Natural Science, 2006, 16(9): 1087-1092.
[14] 罗蕾, 嵇醒. 单向复合材料纤维断裂对局部应力集中的影响[J]. 上海力学, 1994, 15(2): 40-51.
LUO Lei, JI Xing. Influence of fiber fracture on local stress concentration in unidirectional composites[J]. Shanghai Mechanics, 1994, 15(2): 40-51.
[15] 于伟东. 纤维弱节的力学特征与判定[J]. 东华大学学报, 2003, 29(2): 32-36.
YU Weidong. Mechanical characteristics and determination of weak fiber nodes[J]. Journal of Donghua University, 2003, 29(2): 32-36.
[16] 钟群鹏, 赵子华, 张峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005(3): 358-370.
ZHONG Qunpeng, ZHAO Zihua, ZHANG Zheng. Development of fractography and study on micro fracture mechanism[J]. Mechanical Strength, 2005(3): 358-370.
[17] 王贤洁. 棉纤维断裂形态学的电子显微研究[J]. 国外纺织技术(纺织分册), 1981(26): 30-31.
WANG Xianjie. Electron microscopic study of cotton fiber fracture morphology[J]. Foreign Textile Technology (Textile Volume), 1981(26): 30-31.
[1] 吴艳琴, 田景山, 张煦怡, 徐守振, 左文庆, 张旺锋, 勾玲, 张亚黎, 董恒义, 酒兴丽, 余永川, 赵湛. 清理加工工序对新疆机采棉品质的影响[J]. 纺织学报, 2021, 42(11): 24-28.
[2] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[3] 马雷雷;董洋;田伟;刘磊;祝成炎. 碳纤维/涤纶三维机织复合材料的拉伸性能[J]. 纺织学报, 2010, 31(6): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!