纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 41-49.doi: 10.13475/j.fzxb.20230800601

• 纺织工程 • 上一篇    下一篇

高收缩聚酯/聚酰胺6中空橘瓣型纺黏针刺非织造布的制备及其性能

许秋歌1, 郭寻1, 朵永超1, 吴若楠1, 钱晓明1(), 宋兵2, 符浩1,3, 赵宝宝4   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.明新旭腾创新研究院有限公司, 江苏 徐州 221436
    3.上海华峰超纤材料股份有限公司, 上海 201508
    4.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2023-08-02 修回日期:2024-08-19 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 钱晓明(1964—),男,教授,博士。主要研究方向为新型非织造材料制备技术、服装功能与舒适性。E-mail:qxm@tiangong.edu.cn
  • 作者简介:许秋歌(1998—),女,硕士生。主要研究方向为新型非织造材料制备技术。
  • 基金资助:
    天津市研究生研究创新项目(2021YJSB236);天津市科技计划项目(17PTSYJC00150);安徽省自然科学基金资助项目(2208085QE139)

Preparation and performance of high shrinkage polyester/polyamide 6 hollow pie-segmented spunbond needle-punching nonwovens

XU Qiuge1, GUO Xun1, DUO Yongchao1, WU Ruonan1, QIAN Xiaoming1(), SONG Bing2, FU Hao1,3, ZHAO Baobao4   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Mingxinxuteng Institute of Innovation Co., Ltd., Xuzhou, Jiangsu 221436, China
    3. Shanghai Huafeng Microfiber Material Co., Ltd., Shanghai 201508, China
    4. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2023-08-02 Revised:2024-08-19 Published:2024-12-15 Online:2024-12-31

摘要:

为解决高收缩聚酯(HSPET)/聚酰胺6(PA6)中空橘瓣型双组分纺黏长丝铺网针刺后存在纤维开纤裂离效果差的问题,对HSPET/PA6针刺布采用干热处理、水热处理、超声波处理和转鼓机洗处理4种物理开纤方式进行分析,并研究了转鼓机洗处理温度和时间对HSPET/PA6针刺布性能的影响。结果表明:HSPET/PA6针刺布的开纤率为18.9%,干热处理后的HSPET/PA6针刺布开纤率并未改变;经水热处理、超声波处理及转鼓机洗处理后的HSPET/PA6针刺布开纤率分别为24.0%、32.6%、75.5%,转鼓机洗能有效提高HSPET/PA6针刺布的开纤率;在最佳转鼓机洗处理温度60 ℃下,随着转鼓机洗处理时间的延长,开纤率逐渐提高,HSPET/PA6针刺布的柔软度及力学性能随着开纤率的提高逐渐得到改善,而HSPET/PA6针刺布的透气透湿性能逐渐下降。

关键词: 中空橘瓣型纤维, 双组分纺黏工艺, 针刺非织造布, 超细纤维, 开纤率, 涤纶, 聚酰胺

Abstract:

Objective In making nonwoven fabrics, the needling process can not make the two-component fibers split into ultrafine fibers. Because of this, the splitting effect of high shrinkage polyester (HSPET)/polyamide 6 (PA6) hollow pie-segmented two-component spunbonded needle-punching nonwovens (hereinafter referred to as the HSPET/PA6 needle-punching nonwovens) is poor, resulting in the HSPET/PA6 needle-punching nonwovens can not give full play to offer the expected performance. It is necessary to identify ways of splitting the fibers in HSPET/PA6 needle-punching nonwovens, and to prepare hollow pie-segmented spunbond needle-punching nonwovens with high fiber splitting rates and excellent performance.

Method The two-component spunbonded process was used to prepare HSPET/PA6 hollow pie-segmented spunbonded filaments, and HSPET/PA6 needle-punching nonwovens were formed by mesh lay-up and needle-punching reinforcement. The fiber splitting rates of nonwovens prepared by four different physical fiber splitting processes were compared to find out the optimal process. The softness, mechanical properties as well as air and moisture permeability of HSPET/PA6 needle-punching nonwovens were tested to analyze the effect of the optimal fiber splitting process on the properties of HSPET/PA6 needle-punching nonwovens.

Results It was found that the fiber splitting rate of HSPET/PA6 needle-punching nonwovens was 18.9%, and dry heat treatment to the nowovens did not help the fiber splitting rate. However, the fiber splitting rate of HSPET/PA6 needle-punching nonwovens after hydrothermal treatment, ultrasonic treatment and rotary drum machine washing treatment were found to be 24.0%, 32.6% and 75.5%, respectively. This indicates that the rotary drum washing can effectively improve the split rate of HSPET/PA6 needle-punching nonwovens, so that the two-component fibers split into ultrafine fibers. Subsequently, the changes in the properties of HSPET/PA6 needle-punching nonwovens before and after the fiber splitting treatment were investigated using the rotary drum machine washing treatment process. The fiber splitting rates of HSPET/PA6 needle-punching nonwovens were 57.4%, 75.5% and 80.6% when the rotary drum washing treatment temperatures were ambient, 60 ℃ and 90 ℃, respectively. Considering the fiber splitting rate, production cost and environmental protection, 60 ℃ was selected as the appropriate treatment temperature for rotary drum machine washing. The effect of rotary drum washing treatment times on the performance of HSPET/PA6 needle-punching nonwovens was analyzed at the optimal rotary drum washing treatment temperature of 60 ℃. It was also found that the fiber splitting rate of HSPET/PA6 needle-punching nonwovens was gradually increased with the increase of rotary drum washing treatment time. The softness and mechanical properties of HSPET/PA6 needle-punching nonwovens was improved with the increase of the fiber splitting rate. However, along with the increase in the split fiber rate, the flexural aperture of HSPET/PA6 needle-punching nonwovens became smaller, resulting in a gradual decrease in the air permeability and moisture permeability of HSPET/PA6 needle-punching nonwovens.

Conclusion The rotary drum washing process works well in splitting of two-component fibers during the needle punching process, and the process is simple and pollution-free without damaging the fibers. The rotary drum washing process provides a new direction for the splitting of pie-segmented two-component fibers and the preparation of nonwovens with a high fiber splitting rate. The needling process endows HSPET/PA6 needle-punching nonwovens a three-dimensional mesh structure, and the rotary drum washing treatment splits the two-component fibers into ultrafine fibers. The combination of the two processes gives HSPET/PA6 needle-punching nonwovens structural characteristics similar to those of natural leather, and provides the possibility that pie-segmented two-component spunbonded nonwovens can be widely used in the field of microfiber leather as a microfiber synthetic leather-based nonwovens.

Key words: hollow pie-segmented fiber, two-component spunbond process, needle-punching nonwoven, microfiber, fiber splitting rate, polyester, polyamide 6

中图分类号: 

  • TS174.8

图1

HSPET/PA6针刺布的制备工艺流程"

图2

转鼓机洗示意图"

图3

不同物理开纤工艺下HSPET/PA6针刺布的SEM照片"

图4

不同转鼓机洗温度下HSPET/PA6针刺布表面及截面SEM照片"

图5

转鼓机洗不同处理时间下HSPET/PA6针刺布的表面与截面照片"

图6

转鼓机洗开纤前后HSPET/PA6针刺布表面及截面SEM照片"

图7

转鼓机洗不同处理时间下HSPET/PA6针刺布的厚度及面密度"

表1

转鼓机洗不同处理时间下HSPET/PA6针刺布的柔软度及抗弯刚度"

转鼓机洗处
理时间/min
柔软度/
mm
抗弯刚度/(mN·cm)
纵向 横向
0 4.470 33.864 13.013
30 6.589 3.471 2.904
60 6.796 3.123 2.509
90 6.884 1.670 1.648
120 7.173 0.447 0.385

图8

转鼓机洗不同处理时间下HSPET/PA6针刺布的透气性及透湿率"

表2

转鼓机洗不同处理时间下HSPET/PA6针刺布的断裂强力及撕裂强力"

转鼓机洗处
理时间/min
断裂强力/N 断裂伸长率/% 撕裂强力/N
纵向 横向 纵向 横向 纵向 横向
0 624.330 562.000 57.780 59.630 68.856 80.380
30 706.041 631.505 75.676 63.499 76.237 78.722
60 706.709 638.848 82.342 75.968 80.671 82.828
90 733.351 642.594 69.250 63.179 84.390 85.020
120 739.067 689.336 62.418 75.508 90.415 92.368
[1] 卢志敏, 钱晓明. 桔瓣型双组分纺黏水刺超纤技术及其应用[J]. 棉纺织技术, 2011, 39(7): 65-68.
LU Zhimin, QIAN Xiaoming. Technology and application of segmented pie bicomponent spunbonded & spunlaced microfiber[J]. Cotton Textile Technology, 2011, 39(7): 65-68.
[2] 张宇静, 童珈珈, 叶翔宇, 等. 双组分超细纺黏水刺非织造材料发展现状与展望[J]. 丝绸, 2022, 59(7): 29-39.
ZHANG Yujing, TONG Jiajia, YE Xiangyu, et al. Research progress and prospect on bicomponent spunbond hydroentangled nonwovens[J]. Journal of Silk, 2022, 59(7): 29-39.
[3] DURANY A, ANANTHARAMAIAH N, POURDEYHIMI B. High surface area nonwovens via fibrillating spunbonded nonwovens comprising islands-in-the-sea bicomponent filaments: structure-process-property relationships[J]. Journal of Materials Science, 2009, 44(21): 5926-5934.
[4] 梁肖肖, 钱晓明, 王俊南, 等. 中空橘瓣型PET/PA6双组分纺黏纤维生产工艺研究[J]. 合成纤维工业, 2016, 39(1): 27-30.
LIANG Xiaoxiao, QIAN Xiaoming, WANG Junnan, et al. Production process of hollow segmented-pie PET/PA6 bicomponent spunbond fiber[J]. China Synthetic Fiber Industry, 2016, 39(1): 27-30.
[5] 赵德方, 毛加冲, 黄芽, 等. PP/PA6中空橘瓣型复合超细纤维的制备及性能研究[J]. 丝绸, 2022, 59(6): 44-49.
ZHAO Defang, MAO Jiachong, HUANG Ya, et al. Study on preparation and properties of PP/PA6 hollow segmented-pie composite superfine fiber[J]. Journal of Silk, 2022, 59(6): 44-49.
[6] PRAHSARN C, MATSUBARA A, MOTOMURA S, et al. Development of bicomponent spunbond nonwoven webs consisting of ultra-fine splitted fibers[J]. International Polymer Processing, 2008, 23(2): 178-182.
[7] LU Z M, QIAN X M. Combination technology of spunbond & spunlace[J]. Advanced Materials Research, 2011, 331: 241-244.
[8] ZHANG H, QIAN X M, ZHEN Q, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro entangle method[J]. Journal of Industrial Textiles, 2015, 45(1): 48-65.
[9] 左文君, 靳向煜. 分裂型超细纤维水刺非织造布力学性能研究[J]. 产业用纺织品, 2012, 30(7): 9-15.
ZUO Wenjun, JIN Xiangyu. Study on mechanical properties of splitted superfine fiber spunlaced nonwovens[J]. Technical Textiles, 2012, 30(7): 9-15.
[10] 卢志敏, 钱晓明. 橘瓣型双组分纺黏非织造布的开纤技术探讨[J]. 产业用纺织品, 2011, 29(3): 23-26.
LU Zhimin, QIAN Xiaoming. Discussion on the splitting technology of segmented pie bicomponent spunbonded nonwovens[J]. Technical Textiles, 2011, 29(3): 23-26.
[11] 卢延蔚, 钱晓明, 张恒. 橘瓣型双组分非织造材料的开纤技术及过滤性能[J]. 合成纤维工业, 2014, 37(2): 64-67.
LU Yanwei, QIAN Xiaoming, ZHANG Heng. Splitting technology and filtration performance of segmented pie bicomponent nonwovens[J]. China Synthetic Fiber Industry, 2014, 37(2): 64-67.
[12] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers[J]. Journal of the Textile Institute, 2013, 104(9): 972-979.
[13] 朵永超, 钱晓明, 郭寻, 等. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(2): 98-104.
DUO Yongchao, QIAN Xiaoming, GUO Xun, et al. Preparation and properties of hollow pie-segmented high shrinkage polyester/polyamide 6 microfiber non-wovens[J]. Journal of Textile Research, 2022, 43(2): 98-104.
[14] ZHAO B B, QIAN X M, QIAO Y, et al. The application of hollow segmented pie bicomponent spunbond hydro-entangled microfiber nonwovens for microfiber synthetic leather apparel[J]. AATCC Journal of Research, 2019, 6(3): 45-49.
[15] DUO Y C, QIAN X M, ZHAO B B, et al. Preparation and properties of fluffy high-shrinkage polyester/polyamide 6 hollow segmented pie microfiber non-wovens[J]. Textile Research Journal, 2022, 92(17/18): 3221-3233.
[16] 王晓斌, 姚金波. 双组分熔喷非织造布开纤方法及开纤效果评价方法探讨[J]. 产业用纺织品, 2008, 26(11): 21-24.
WANG Xiaobin, YAO Jinbo. Discussion on slitting fiber on manufacture bicomponent meltblown nonwovens and evaluation method of splitting effect[J]. Technical Textiles, 2008, 26(11): 21-24.
[17] 于宾, 焦晓宁. 高收缩聚酯纤维及其在非织造材料中的应用[J]. 产业用纺织品, 2012, 30(11): 39-43.
YU Bin, JIAO Xiaoning. High-shrinkage polyester fiber and its application on nonwovens[J]. Technical Textiles, 2012, 30(11): 39-43.
[18] 殷保璞, 靳向煜. 超细纤维水刺非织造布的纤维裂离机理及性能[J]. 东华大学学报(自然科学版), 2003, 29(3): 55-58.
YIN Baopu, JIN Xiangyu. Principle of fiber being splited and performance of microfiber spunlaced nonwoven[J]. Journal of Donghua University (Nature Science), 2003, 29(3): 55-58.
[19] 秦晓, 王秋美. 超细纤维的开纤剥离[J]. 山东纺织科技, 2005(4): 39-41.
QIN Xiao, WANG Qiumei. The peeling technique in processing ultra-fine fiber stripping of microfiber[J]. Shandong Textile Science and Technology, 2005(4): 39-41.
[20] 杨建建, 李文林, 王伟建. 超声波技术在石油工业危险废物处置中的应用研究综述[J]. 北部湾大学学报, 2023, 38(2): 33-40.
YANG Jianjian, LI Wenlin, WANG Weijian. On the application of ultrasonic technology in disposal of petroleum industry hazardous wastes[J]. Journal of Beibu Gulf University, 2023, 38(2): 33-40.
[21] 戴东风. 哪些因素影响滚筒洗衣机的洗净度[J]. 大众用电, 2002(7): 38-39.
DAI Dongfeng. What factors affect the washability of drum washing machines[J]. Popular Electricity, 2002(7): 38-39.
[22] 薛元, 王潮霞, 曹艳, 等. 超细涤/锦复合丝剥离机理与工艺研究[J]. 纺织学报, 1998, 19(4): 196-199.
XUE Yuan, WANG Chaoxia, CAO Yan, et al. Study on splitting mechanism and process of polyester/polyamide composite superfine fiber filament[J]. Journal of Textile Research, 1998, 19(4): 196-199.
[23] 刘凡, 钱晓明, 赵宝宝, 等. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(3): 114-119.
LIU Fan, QIAN Xiaoming, ZHAO Baobao, et al. Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens[J]. Journal of Textile Research, 2018, 39(3): 114-119.
[1] 章红豆, 陈芳, 楚祥婷, 陆惠文, 刘新金, 苏旭中. 基于示踪纤维法测试的化纤条内纤维弯钩[J]. 纺织学报, 2024, 45(12): 74-79.
[2] 彭博, 吴宇洁, 张悦, 李妙龙, 孟祥, 李伟, 鲁育豪. 低取代度淀粉烷基羧酸单酯的烷基链长对涤纶上浆性能的影响[J]. 纺织学报, 2024, 45(10): 122-127.
[3] 韩画宇, 杨文龙, 王甫, 胡柳, 胡毅. 苯并[a]吩恶嗪基功能染料制备及其在改性涤纶织物上的应用[J]. 纺织学报, 2024, 45(10): 128-136.
[4] 何雨静, 康建平, 赵坤伟, 何勇, 李佳逸, 谭昕. 袋式除尘用聚苯硫醚纤维的研究进展与展望[J]. 纺织学报, 2024, 45(10): 232-240.
[5] 刘文龙, 李好义, 何东洋, 李长金, 张杨, 马秀清, 李满意, 杨卫民. 低密度聚乙烯熔喷工艺及其非织造布性能[J]. 纺织学报, 2024, 45(10): 31-38.
[6] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[7] 朵永超, 宋兵, 张如全, 许秋歌, 钱晓明. 熔融双组分超细纤维成纤技术研究进展[J]. 纺织学报, 2024, 45(08): 54-64.
[8] 杨瑞华, 邵秋, 王翔. 再循环棉及涤纶短纤维的成纱性能与面料特征[J]. 纺织学报, 2024, 45(08): 127-133.
[9] 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54.
[10] 黄连香, 王祥荣, 侯学妮, 钱琴芳. 茜草色素对生物基聚酰胺56的染色性能[J]. 纺织学报, 2024, 45(07): 94-103.
[11] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[12] 李文雅, 周剑, 廖昙倩, 董真真. 薄鞘高包覆涤纶/棉包芯纱的结构控制及其工艺[J]. 纺织学报, 2024, 45(06): 46-52.
[13] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[14] 方雪明, 董智佳, 丛洪莲, 丁玉琴. 单面纬编织物变化孔隙率结构设计与透气导湿性能评价[J]. 纺织学报, 2024, 45(05): 51-59.
[15] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!