纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 169-176.doi: 10.13475/j.fzxb.20240800901

• 染整工程 • 上一篇    下一篇

柔性多孔超疏水电极的制备及其防雾性能

丁亚茹1(), 张豪杰1, 刘让同1, 王一帆1, 王晶晶2   

  1. 1 中原工学院 智能服装与服饰学院, 河南 郑州 451191
    2 亚太森博(山东)浆纸有限公司, 山东 日照 276826
  • 收稿日期:2024-08-07 修回日期:2025-04-13 出版日期:2025-07-15 发布日期:2025-08-14
  • 作者简介:丁亚茹(1988—),女,讲师。主要研究方向为柔性可穿戴器件的表界面功能性。E-mail:6888@zut.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(62201629);河南省高等学校重点科研项目(23A540005);国家级大学生创新创业训练计划项目(202410465018)

Preparation and anti-fogging properties of flexible porous superhydrophobic electrode

DING Yaru1(), ZHANG Haojie1, LIU Rangtong1, WANG Yifan1, WANG Jingjing2   

  1. 1 College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2 Asia Symbol (Shandong) Pulp and Paper Co., Ltd., Rizhao, Shandong 276826, China
  • Received:2024-08-07 Revised:2025-04-13 Published:2025-07-15 Online:2025-08-14

摘要:

为抵御外环境中小液滴(雾)对多孔电极材料的浸润作用以及雾滴凝聚所产生的长期电信号干扰,采用涂层法在多孔聚氨酯海绵(PU)上构筑炭黑(CB)导电层,制备柔性多孔电极;再对柔性电极用十八烷基三甲氧基硅烷(OTMS)进行疏水化处理,制得柔性多孔超疏水电极,研究了电极的表面形态、浸润性能及表面温度对材料电响应性能的影响规律。结果表明:CB和OTMS能够均匀负载到PU海绵上制备柔性多孔超疏水电极;该电极表面的水接触角为152.5°,滚动角为6.2°,展现出良好的超疏水性能,且OTMS涂层对电极的电性能几乎不影响;电极作为压力传感器展现出较高的灵敏度、较快的响应时间及良好的响应稳定性;另外电加热能够增强OTMS涂层对雾滴凝聚的抵御能力;因此,在OTMS涂层、多孔结构与电热效应协同作用下,该电极在600 s内实现了精准的压力信号响应。柔性多孔导电材料作为压力响应器件,在高湿度的环境中,实现了持久的抗干扰能力,拓宽了其在可穿戴设备中的应用。

关键词: 多孔导电材料, 超疏水, 柔性多孔电极, 十八烷基三甲氧基硅烷, 防雾性能

Abstract:

Objective Inspired by the dew on the tips of grass, condensation on the surface of materials is a very common phenomenon in nature. However, the accumulation of droplets is mainly attributed to the hydrophobic and waterproof layer on the surface of the materials. Due to the heat loss during the condensation, condensation on the porous electrodes will still affect the electrical response stability of the electrode, even if the porous electrode has a hydrophobic coating. Therefore, the surface of porous electrode should not only have hydrophobic properties, but also be able to maintain durable hydrophobic properties in a humid environment (such as fog, dew, etc.).

Method The conductive layer of carbon black (CB) was loaded on porous polyurethane (PU) sponge by electrostatic layer self-assembly method. Firstly, the PU sponge was coated with polyethyleneimine (PEI), a positively charged polyelectrolyte. Because the CB had opposite charges on their surfaces, a chemical bond could form between CB and PEI through strong electrostatic attraction, allowing the CB to be stably coated onto the PU sponge. The above steps were repeated to complete the assembly process of multi-layer conductive CB to prepare CB/PU electrode. Then the sponge impregnated with OTMS solution was placed in an oven and heated at 70 ℃ for 3 h. Additionally, hydroxyl groups in the CB enabled their combination with OTMS via a silane coupling reaction.

Results The flexible porous electrode was coated with OTMS, showing its surface morphology, chemical groups, superhydrophobicity, pressure response properties, and the synergistic effect of superhydrophobicity, porous and temperature to resist infiltration of tiny droplets. Before CB conductive coating, the polyurethane sponge exhibited a smooth surface morphology. However, after coating with CB and OTMS, the sponge surface became rough. The CB and OTMS can be uniformly loaded on the polyurethane sponge, The chemical structure of the CB/OTMS was determined using FT-IR spectroscopy. After hydrophobization, the water contact angle increased to 152.5°, and the slip angle reached 6.2°, showing good superhydrophobic performance. OTMS coating has almost no effect on the conductivity of the CB/PU electrode, and the droplet accumulation on the OTMS/CB/PU electrode does not affect the electrical properties. As a pressure sensor, the flexible superhydrophobic porous electrode shows high sensitivity (103.18 kPa-1), short response time (60 ms), and good response stability. Although the droplets aggregation on the flexible porous superhydrophobic electrode does not affect its electrochemical stability, the continuous spraying of droplets will interfere the electrical signal response. Based on the electrical signal response during the intermittent spraying process, it is inferred that the temperature of the droplet may be the main cause of the electrical signal response. In order to reduce the influence of the temperature of the droplets on the electrode, an external 20 V constant-voltage DC source was applied to heat the flexible porous superhydrophobic electrode at about 50 ℃. When the electrode is maintained at 50 ℃, it can compensate for the heat loss caused by the droplet spraying, and finally achieves the accurate pressure response behavior of the electrode material within 600 s. The surface of porous material treated by OTMS can achieve effective droplet aggregation, and temperature compensation can balance the temperature loss caused by droplet spray. Furthermore, the superhydrophobic stability of the porous electrode surface is maintained.

Conclusion The prepared flexible porous superhydrophobic electrode has excellent pressure response performance and anti-fogging performance. The long chain alkyl of OTMS has low surface energy, which can give the porous electrode superhydrophobic properties. In addition, electric heating is beneficial to the long alkyl chain extension of OTMS, and pores on the surface of electrode can provide a large number of sites for the condensation, thus increasing the aggregation efficiency. Morever, electric heating can further prevent the liquid film from penetrating into the porous electrode. The results demonstrate that the OTMS porous electrode has excellent superhydrophobicity and anti-wetting for fogs, and the flexible superhydrophobic porous electrode can be utilized to improve the environmental stability of pressure-responsive components.

Key words: porous conductive material, superhydrophobic, flexible porous electrode, octadecyltrimethoxysilane, anti-fogging performance

中图分类号: 

  • TB34

图1

柔性多孔超疏水电极的制备流程图"

图2

多孔材料的表面形貌及元素分布图"

图3

PU/CB和PU/CB/OTMS导电材料的红外分析图谱"

图4

柔性多孔超疏水电极表面的接触角和滚动角"

图5

电极表面的水浸润稳定性"

图6

压缩响应性能检测"

图7

雾滴喷淋对电信号的影响"

图8

温度对柔性多孔超疏水电极的作用"

图9

20 V外接电压时雾滴喷淋对电极电信号的影响"

[1] WEI Junjie, XIAO Peng, CHEN Tao. Water-resistant conductive gels toward underwater wearable sensing[J]. Advanced Materials, 2023. DOI:10.1002/adma.202370305.
[2] NADA Bjelobrk, HENRI Louis Girard, SRINIVAS Bengaluru Subramanyam, et al. Thermocapillary motion on lubricant-impregnated surfaces[J]. Physical Review Fluids, 2016. DOI: 10.1103/PhysRevFluids.1.063902.
[3] SONG Dong, BHARAT Bhushan. Enhancement of water collection and transport in bioinspired triangular patterns from combined fog and condensation[J]. Journal of Colloid and Interface Science, 2019, 557: 528-536.
doi: S0021-9797(19)31111-7 pmid: 31546118
[4] HOU Lanlan, QIU Mengna, WANG Yaqiong, et al. Bioinspired double-stranded yarn with alternating hydrophobic/hydrophilic patterns for high-efficiency fog collection[J]. Chinese Journal of Polymer Science, 2024, 42, 968-975.
[5] DONG Shaojun, WANG Yang, PEI Ying, et al. Water collecting carbon nanotube yarn with biomimetic composition and structure[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100960.
[6] YE Lijun, GUAN Jipeng, LI Zhixiang, et al. Fabrication of superhydrophobic surfaces with sontrollable electrical conductivity and water adhesion[J]. Langmuir, 2017, 33(6): 1368-1374.
doi: 10.1021/acs.langmuir.6b03848 pmid: 28052672
[7] PENG Chaoyi, CHEN Zhuyang, TIWARI Manish K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17 (4): 355-360.
doi: 10.1038/s41563-018-0044-2 pmid: 29581573
[8] BISWAS, JANA Aritra, NIKHIL R. Cotton modified with silica nanoparticles, N,F codoped TiO2 nanoparticles, and octadecyltrimethoxysilane for textiles with self-cleaning and visible light-based cleaning properties[J]. ACS Applied Nano Materials, 2020, 4 (1): 877-885.
[9] 戈亚南, 刘慧丽, 陈华艳, 等. 十八烷基硅烷疏水改性PVDF膜的制备及膜蒸馏抗润湿性能[J]. 山东化工, 2023, 52 (13): 5-9.
GE Yanan, LIU Huili, CHEN Huayan, et al. Octadecyl-silane hydrophobic modified PVDF membrane and membrane distillation anti-wetting properties[J]. Shandong Chemical Industry, 2023, 52 (13): 5-9.
[10] 朱志文, 徐国华, 安越, 等. 辛基三乙氧基硅烷/十八烷基三氯硅烷均相混合自组装单分子膜的表征及其形成机制[J]. 物理化学学报, 2014, 30 (8): 1509-1517.
ZHU Zhiwen, XU Guohua, AN Yue, et al. Characterization of a homogeneously mixed octyltriethoxyilane/octadecyltrichlorosilane self-assembled monolayer and analysis of its formation mechanism[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1509-1517.
[11] SHA Di, ZHENG Run, SHI Kai, et al. Macroporous polyvinyl alcohol-formaldehyde-silicon composite sponges with designed structure for high-efficiency water-in-oil emulsion separation[J]. Journal of Environmental Chemical Engineering, 2024. DOI:10.1016/j.jece.2023.111738.
[12] KIM Jisun, KIM Sunghwa, LEE Hajin, et al. An easy preparation of carbon nanoparticle-coated hydrophobic substrates for highly efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI: 10.1016/j.colsurfa.2024.133532.
[13] XIANG Yaolei, HUANG Shenglin, HUANG Tianyun, et al. Superrepellency of underwater hierarchical structures on salvinia leaf[J]. Proceedings of the National Academy of Sciences, 2020, 5, 117: 2282-2287.
[14] LI Xiaolong, HAO Junnan, LIU Rong, et al. Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes[J]. Energy Storage Materials, 2020, 33: 62-70.
doi: 10.1016/j.ensm.2020.05.004
[15] LONG Yifei, YIN Xingxing, MU Peng, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J], Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.126137.
[16] WANG Ling, CHEN Yang, LIN Liwei, et al. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite[J], Chemical Engineering Journal, 2019, 362: 89-98.
doi: 10.1016/j.cej.2019.01.014
[17] 朱志文. 不锈钢/硅表面烷基三氯硅烷自组装单分子膜测制备及表征[D]. 浙江: 浙江大学, 2014: 20-38.
ZHU Zhiwen. Preparation and characterization of alkyltrichlorosilane SAMs on stainless steel/silica surface[D]. Zhejiang: Zhejiang University, 2014:20-38.
[18] 冯军勇. 辛烷基三乙氧基硅烷/十八烷基三氯硅烷混合自组装单分子膜的制备[D]. 浙江: 浙江大学, 2007: 15-28.
FENG Junyong. Preparation of the mixed octyltrieyhoxysilane and octadecyltrichlorosilane self-assembled monolayers[D]. Zhejiang: Zhejiang University, 2007:15-28.
[19] XU Ruixin, ZHANG Kaili, XU Xiangyang, et al. Superhydrophobic WS2-nanosheet-wrapped sponges for underwater detection of tiny vibration[J]. Advanced Science, 2018. DOI:10.1002/advs.201700655.
[20] SHI Yunfen, ZHONG Yinyan, SUN Zhong, et al. One-step foam assisted synthesis of robust superhydrophobic lignin-based magnetic foams for highly efficient oil-water separation and rapid solar-driven heavy oil removal[J]. Journal of Water Process Engineering, 2022. DOI: 10.1016/j.jwpe.2022.102643.
[1] 袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲. 基于山嵛酸和ZIF-8改性的超疏水防结冰棉织物[J]. 纺织学报, 2025, 46(02): 197-206.
[2] 旋湘桃, 张辉, 车秋凌, 魏乾阳, 张劲峰, 王毅. 自清洁织物的研究进展[J]. 纺织学报, 2025, 46(01): 227-237.
[3] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[4] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[5] 李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71.
[6] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[7] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[8] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[9] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[10] 乔路阳, 吕巧莉, 胡乾恒, 王成龙, 郑今欢. 改性羰基铁粉制备及其在蓝光固化磁控超疏水薄膜中的应用[J]. 纺织学报, 2022, 43(12): 88-95.
[11] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[12] 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132.
[13] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[14] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[15] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!