纺织学报 ›› 2018, Vol. 39 ›› Issue (12): 72-77.doi: 10.13475/j.fzxb.20171101706

• 染整与化学品 • 上一篇    下一篇

预处理方法对丝瓜络纤维性能的影响

    

  1.  
  • 收稿日期:2017-11-10 修回日期:2018-09-10 出版日期:2018-12-15 发布日期:2018-12-17
  • 基金资助:

     

Influence of pretreatment process on luffa fiber′s properties

    

  • Received:2017-11-10 Revised:2018-09-10 Online:2018-12-15 Published:2018-12-17

摘要:

为提高丝瓜络纤维资源的利用价值,采用气爆法、复合酶法、化学法对丝瓜络纤维进行处理,研究处理方法对纤维性能的影响。借助扫描电子显微镜、热重分析仪等对处理前后丝瓜络纤维的表面形态、脱胶率、化学成分、热学性能及吸湿性能进行分析,并根据纤维的吸放湿性能绘制吸放湿曲线。结果表明:预处理后丝瓜络纤维表面均出现条痕,化学处理的效果最明显;气爆处理纤维的脱胶率最低为20. 00%,纤维素含量为54. 61%,化学处理后纤维素含量高达81. 10%,酶处理效果介于二者之间,3 种处理方法对木质素的去除率均较低:丝瓜络纤维的回潮率随着脱胶率的提高而增加,3 种方法处理丝瓜络纤维后的吸放湿曲线规律基本一致;预处理有助于丝瓜络纤维热稳定性的提高,且脱胶率越高,热分解温度也越高。

关键词: 丝瓜络纤维, 预处理, 吸湿性, 脱胶率, 热学性能 

Abstract:

In order to exploit the utilization value of luffa fiber resources, steam explosion, combined enzyme process and chemical process were adopted to treat natural luffa fiber, and the effect of different treatment processes on luffa fiber′ s properties was investigated. Scanning electran microsoope and thermogravimetric analyzer were used to analyze the surface morphology structure, degumming rate, chemical composition, thermal property and moisture absorption and release properties of luffa fibers before and after treatment, and the moisture absorption and release curves of luffa fibers were drawn. The result shows that the treated luffa fibers all have a large number of grooves in the surface, and the chemical treatment effect is the most obvious. The fibers subjected to the steam explosion treatment have the lowest degumming rate of 20. 00% and cellulose content is 54. 61%. The fibers subjected to the chemical treatment has the cellulose content up to 81. 10%, and the effect of the enzyme treatment is the second. The lignin content of luffa fibers subjected to the three treatment process are all high. The moisture regain of luffa fiber increases with the increase of the degumming rate, the curves of moisture absorption and release of luffa fibers treated by the three processes have substantial consistent rule. The pretreatment facilitates the improvement of thermal stability of luffa fibers. The higher the degumming rate, the higher the thermal decomposition temperature.

Key words: luffa fiber, pretreatment, moisture absorption, degumming rate, thermal property

[1] Simon J,Muller H P,Koch R,et al.Thermoplastic and biodegradable plymers of cellulose[J].Poly Degrad Stab,1998,59:107-115.
[2] Bonare C.A,D’Almeida.Water absorption by sponge gourd(luffa cylindrical)-polyester[J].Journal of Material Science Letter,1999,21:1789-1791.
[3] Demir H,Top A, Balk se D,ulku S.Dye adsorption behavior of luffa cylindrical fibers[J].Journal of Hazardous Materials,2008,153:389-394.
[4] 陈洪章、刘丽英.蒸汽爆碎技术原理及应用[M].北京:化学工业出版社,2007:1-39.
CHEN Hongzhang,LIU Liying.Theory and application of steam explosion technology[M].Beijing:Chemical Industry Press, 2007:1-39.
[5] 李定国,王树东,吴志庄等.竹质纤维的蒸汽爆碎预处理研究[J].中南林业科技大学学报,2013,33(5):114-119.
LI Dingguo,WANG Shudong,WU Zhizhuang et al.Study on steam explosion pretreatment of bamboo lignocellulose[J].Journal of Central South University of Forestry & Technology, 2013,33(5):114-119.
[6] 陈公德,陈杰,崔鹏.生物酶解法提取苦楝素工艺过程的研究[J].应用化工,2010,39(1):8-11.
CHEN Gongde,CHEN Jie,CUI Peng.Study on extraction technology of toosendanin by enzymatic hydrolysis[J].Applied Chemical Industry, 2010,39(1):8-11.
[7] L S Zheng, Y M Du, J Y Zhang. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes[J]. Bioresource Technology, 2001, 78: 89-94.
[8] 王许涛.生物纤维原料汽爆预处理技术及应用研究[D].郑州:河南农业大学,2008:6-19.
XU Wangtao.The study on steam explosion pretreatment technology and application of bio-cellulose materials.[D].Zhenzhou:Henan Agricultural University.2008:6-19.
[9] 祝志峰.纺织工程化学[M].第1版.上海:东华大学出版社,2010:265-267.
ZHU Zhifeng. Textile Engineering Chemistry[M].1th ed.Shanghai:Donghua University Press, 2010:265-267.
[10] 闫红芹,凤权,彭祥等.壳聚糖纤维的热稳定性和燃烧性[J].纺织学报,2015,36(10):12-16.
YAN Hongqin,Feng Quan,Peng Xiang et al.Thermal stability and combustion behavior of chitosan fiber[J].Journal of Textile Research, 2015, 36(10):12-16.
[11] 于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002:232.
YU Weidong,CHU Caiyuan.Textile Physics[M].Shanghai:Donghua University Press,2002:232.
[1] 田俊杰 张李超 赵星 白宇 . 纺织品图案主结构的快速提取方法[J]. 纺织学报, 2018, 39(04): 137-143.
[2] 王旭 冯向伟 李亚娟. 织物吸湿性对织物和皮肤间动摩擦力的影响[J]. 纺织学报, 2017, 38(12): 54-59.
[3] 周莉 王鸿博 傅佳佳 陈太球 蒋春燕. 应用电子束辐照技术的棉织物抗菌整理工艺优化[J]. 纺织学报, 2017, 38(10): 81-87.
[4] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[5] 吴惠英. 脱胶工艺对蚕丝溶解及再生丝素蛋白纤维性能的影响[J]. 纺织学报, 2017, 38(08): 75-80.
[6] 马娟 金剑 金欣 肖长发. 亲水抗静电共混聚酯母粒的制备及其性能[J]. 纺织学报, 2017, 38(07): 6-10.
[7] 王晓梅 陈才深. 聚乳酸/聚丙烯共混纺粘纤维的制备及其性能[J]. 纺织学报, 2017, 38(01): 13-16.
[8] 刘昀庭 张红霞 贺荣 祝成炎 王浙峰 徐青艺. 导水型再生涤纶织物的制备及其性能[J]. 纺织学报, 2016, 37(4): 96-100.
[9] 武海良 姚一军 沈艳琴 . 纺织浆料的吸湿与放湿规律[J]. 纺织学报, 2016, 37(3): 72-77.
[10] 崔玉梅 程隆棣 肖远淑. 云南野生牛角瓜纤维的吸湿与吸水性[J]. 纺织学报, 2016, 37(07): 22-27.
[11] 刘玉森 陈莉 刘冰 王驰 . 稻秸秆纤维的吸湿性能[J]. 纺织学报, 2016, 37(05): 1-5.
[12] 宋亚伟 房宽峻 张建波 蔡玉青 郝龙云. 喷墨技术及其在纺织品印花中的应用进展[J]. 纺织学报, 2015, 36(08): 165-172.
[13] 倪海燕 陈东生 付世伟. 竹笋壳纤维的吸湿性能[J]. 纺织学报, 2014, 35(6): 20-0.
[14] 密叶 李群 赵昔慧 洪永明. 羧甲基纤维素吸水性纱布的制备及其吸湿性动力学分析[J]. 纺织学报, 2013, 34(6): 21-25.
[15] 郑磊, 丁若垚, 郁崇文. 脱胶细菌在亚麻粗纱煮练中的初步应用[J]. 纺织学报, 2012, 33(8): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐水凌. 纳米银海丝纤维抗菌性能和细胞毒作用的研究[J]. 纺织学报, 2009, 30(01): 13 -17 .
[2] 张聿. 基于弱混沌理论的纹织设计方法研究[J]. 纺织学报, 2004, 25(04): 22 -23 .
[3] 胡觉亮. 基于贝叶斯方法的织物分类研究[J]. 纺织学报, 2004, 25(01): 48 -49 .
[4] 尤奇. 桑蚕丝精练机理的初步研究[J]. 纺织学报, 1989, 10(07): 7 -10 .
[5] 李鑫*;李杰新;谭丛德. 差捻包缠纱差捻机理及差捻结构研究[J]. 纺织学报, 2001, 22(03): 4 -5 .
[6] 段友莳. 论通风效率[J]. 纺织学报, 1982, 3(10): 29 -30 .
[7] 王革辉. KES与FAST系统测织物低应力力学性能的比较[J]. 纺织学报, 2002, 23(06): 30 -31 .
[8] 姜培武;陈东生. 染料种类对稀土染色效果的影响[J]. 纺织学报, 1993, 14(02): 40 .
[9] 周志宇;杨东鹤. 基于计算机视觉技术的蚕丝截面积测量[J]. 纺织学报, 2005, 26(1): 36 -38 .
[10] 钟原静;陈宗农;朱新杰. 基于DSP的高速剑杆织机控制系统[J]. 纺织学报, 2005, 26(1): 87 -89 .