纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 67-72.doi: 10.13475/j.fzxb.20180303206

• 纺织工程 • 上一篇    下一篇

毛织物孔隙特征与透湿性关系

张文娟1, 纪峰1(), 张瑞云1, 赵晓杰1,2, 王妮1, 王俊丽3, 张建祥2   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.鲁泰纺织股份有限公司, 山东 淄博 255100
    3.上海嘉麟杰纺织品股份有限公司, 上海 201504
  • 收稿日期:2018-03-15 修回日期:2018-10-10 出版日期:2019-01-15 发布日期:2019-01-18
  • 通讯作者: 纪峰
  • 作者简介:张文娟(1993—),女,硕士生。主要研究方向为纺织面料舒适性。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309200);国家重点研发计划项目(2017YFB0309100);纺织面料技术教育部重点实验室开放课题基金项目(KLTST201609)

Study on relationship between capillary characteristics and moisture permeability of wool fabrics

ZHANG Wenjuan1, JI Feng1(), ZHANG Ruiyun1, ZHAO Xiaojie1,2, WANG Ni1, WANG Junli3, ZHANG Jianxiang2   

  1. 1. Key Laboratory of Textlie Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Luthai Textile Co., Ltd., Zibo, Shandong 255100, China
    3. Shanghai Challenge Textile Co., Ltd., Shanghai 201504, China
  • Received:2018-03-15 Revised:2018-10-10 Online:2019-01-15 Published:2019-01-18
  • Contact: JI Feng

摘要:

为探索毛织物的孔隙特征对其透湿性的作用机制,建立毛织物孔隙特征与其透湿性的经验关系模型,采用体积孔隙率、表面孔隙率和平均孔径分别从不同角度对毛织物的孔隙特征进行表征,用湿阻表征织物透湿性;分别测试了24种毛织物试样的孔隙指标和湿阻;最后分别建立各孔隙特征指标与湿阻的多项式回归模型。得到的经验关系曲线表明:3个织物孔隙特征指标分别与湿阻呈一定程度的非线性相关性,且都呈先正相关后负相关的特征,即湿阻在一定区域存在最高值;当体积孔隙率为60%时湿阻进入最高值区域;当表面孔隙率超过1.5%时,其对湿阻的影响关系开始明显,表面孔隙率在3%附近湿阻呈最高值;当平均孔径在45 μm左右时,湿阻到达最高区域。

关键词: 毛织物, 透湿性, 孔隙特征, 湿阻

Abstract:

In order to investigate on the influence mechanism of the capillary structure on moisture permeability of wool fabrics, empirical models describing the relationship between capillary characteristics and moisture permeability of wool fabrics were built. Three indices of volume porosity, surface porosity and the average pore size were adopted to describe capillary characteristics of wool fabrics from different aspects. And the index of wet resistance was used to represent the moisture permeability of fabrics. For twenty-four types of wool fabric samples, the capillary characteristic indices were measured as well as wet resistance. Finally, polynomial regression analysis was conducted between each capillary characteristic index and the wet resistance index. The obtained empirical relationship curves present similar tendencies. The indices of volume porosity, surface porosity and the average pore size present nonlinear correlations with wet resistance to a certain extent respectively. Along with the growth of each capillary index, the wet resistance first shows positive correlation and then negative correlation. That is, the wet resistance reaches a maximum value in certain regions. For the volume porosity-wet resistance relation curve, the wet resistance reaches maximum when the volume porosity is about 60%. The surface porosity-wet resistance relationship gets clear when surface porosity rises beyond 1.5%, and at about 3% of surface porosity, the wet resistance reaches maximum. Similarly, the wet resistance stops increasing as the average pore size arises to about 45 μm.

Key words: wool fabric, moisture permeability, capillary characteristic, wet resistance

中图分类号: 

  • TS101.9234

表1

织物结构参数"

试样
编号
试样
组织
厚度/
mm
面密度/
(g·m-2)
经纬密度/
(根·(10 cm)-1)
经密 纬密
1 2  2山形斜纹 0.69 233.21 267 197
2 双层接结 0.44 210.87 455 420
3 2  2右斜 0.31 167.87 383 366
4 5  4纬面缎纹 0.38 202.34 367 367
5 2  2左斜纹 0.35 177.49 363 379
6 平纹 0.43 216.63 467 368
7 1  2右斜纹 0.48 224.74 307 284
8 2  2左斜纹 0.35 181.24 189 200
9 37 tex,2  2右斜 0.41 194.56 281 355
10 29 tex×2纬平针 0.98 278.67 94 116
11 29 tex×2纬平针 0.65 200.70 148 160
12 20 tex×2纬平针 0.91 258.64 120 150
13 1+1罗纹 0.82 182.52 114 148
14 14 tex×2纬平针 0.67 184.58 132 182
15 小提花 0.77 217.07 146 132
16 28 tex纬平针 0.64 187.03 148 158
17 17 tex纬平针 0.54 145.19 184 194
18 17 tex×2纬平针 0.68 207.77 132 131
19 绉组织 0.69 231.67 315 265
20 小提花组织 0.39 186.46 435 410
21 重组织 0.58 233.32 200 195
22 方格组织 0.37 172.38 370 390
23 斜纹 0.30 149.58 465 350
24 27 tex×2纬平针 0.60 232.50 126 111

图1

Matlab图像处理 (a) Original image; (b) Grayscale image; (c) Enhanced image; (d) Binarized image"

表2

织物试样测试数据"

试样
编号
表面
孔隙率/%
体积
孔隙率/%
平均孔径/
μm
湿阻/
(m2·Pa·W-1)
1 0.81 56.42 24.79 4.25
2 0.67 38.54 18.47 2.67
3 0.16 31.37 14.81 2.27
4 0.04 31.59 16.89 2.83
5 0.06 34.97 17.42 3.00
6 0.32 35.24 12.76 3.30
7 0.45 39.83 20.18 3.70
8 0.46 34.51 11.42 2.53
9 0.03 39.14 14.75 2.90
10 6.42 63.57 44.90 4.13
11 6.22 60.40 29.79 4.20
12 2.66 63.38 40.46 4.34
13 2.45 71.37 55.79 4.13
14 7.40 64.57 70.16 4.10
15 3.00 63.74 40.11 4.45
16 4.16 62.64 35.54 4.35
17 5.58 65.32 52.33 4.31
18 4.00 61.00 58.84 4.47
19 2.57 57.21 52.94 4.23
20 0.59 39.34 18.06 2.87
21 1.25 48.72 56.55 3.95
22 0.37 40.25 12.59 3.56
23 0.14 37.00 11.04 2.99
24 3.45 50.31 61.04 3.99

图2

织物体积孔隙率与湿阻的关系曲线"

表3

方差分析表"

项目 平方和 自由度 均方 F 显著性
回归 10.24 2 5.12 82.88 0.00
残差 1.30 21 0.06
总计 11.54 23

图3

织物表面孔隙率与湿阻的关系曲线"

图4

平均孔径与湿阻的关系曲线"

[1] DAS A, YADAW S S. Study on moisture vapor transmission characteristics of woven fabrics from cotton-acrylic bulked yarns[J]. Journal of the Textile Institute Proceedings & Abstracts, 2013,104(3):322-329.
[2] 徐广标, 邱茂伟, 王府梅. 精纺毛织物的孔隙与结构及透气性的关系[J]. 毛纺科技, 2005,33(4):14-17.
XU Guangbiao, QIU Maowei, WANG Fumei. The relationship between porosity and structure and air permeability of worsted wool fabric[J]. Wool Textile Journal, 2005,33(4):14-17.
[3] 吴海军, 钱坤. 毛织物的孔隙与结构对其透气性的影响[C]// 2006中国国际毛纺织会议暨IWTO羊毛论坛论文集(上册). 西安: 中国毛纺织行业协会, 2016: 241-244.
WU Haijun, QIAN Kun. Effects of pore and structure of wool fabric on its permeability[C]// 2006 China International Wool Textile Conference and IWTO Wool BBS on (I). Xi 'an: China Wool Textile Industry Association, 2006: 241-244.
[4] 范菲, 齐宏进. 织物孔径特性与织物结构及芯吸性能的关系[J]. 纺织学报, 2007,28(7):38-41.
FAN Fei, QI Hongjin. Relationship between capillary properties and configurations and wicking capability of fabric[J]. Journal of Textile Research, 2007,28(7):38-41.
[5] 范菲, 齐宏进. 差动毛细效应与织物孔径特性的关系[J]. 纺织导报, 2008(8):90-92.
FAN Fei, QI Hongjin. Relationship between differential capillary effect and fabric aperture characteristics[J]. Textile Guide, 2008(8):90-92.
[6] 姚穆, 施楣梧, 蒋素婵. 织物湿传导理论与实际的研究: 第一报: 织物的湿传导过程与结构的研究[J]. 西北纺织工学院学报, 2001,15(2):1-8.
YAO Mu, SHI Meiwu, JIANG Suchan. Fabric moisture theory and practical research: first report: the study of fabric wet conduction process and fabric structure[J]. Journal of Northwest Institute of Textile Technology, 2001,15(2):1-8.
[7] YANILMAZ M, KALAOGLU F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics[J]. Textile Research Journal, 2012,82(8):820-831.
doi: 10.1177/0040517511435851
[8] FRAGIADAKI E, HARAHALAKIS S, KALOGIANNI E. Characterization of porous media by dynamic wicking combined with image analysis[J]. Colloids and Surfaces: A: Physicochemical and Engineering Aspects, 2012,413:50-57.
doi: 10.1016/j.colsurfa.2012.02.031
[9] 李毅, 王晓东. 毛织物的某些结构参数与织物热舒适物理指标的关系[J]. 毛纺科技, 1985,13(2):28-33.
LI Yi, WANG Xiaodong. Effects of some structural parameters of wool fabrics on physical comfort of fabric thermal comfort[J]. Wool Textile Journal, 1985,13(2):28-33.
[10] 姚穆, 施楣梧. 织物湿传导理论与实际的研究:第二报: 织物湿传导理论方程的研究[J]. 西北纺织工学院学报, 2001,15(2):9-14.
YAO Mu, SHI Meiwu. Theoretical and practical research on wet conduction theory of fabrics: second report: theoretical study on wet conduction theory of fabrics[J]. Journal of Northwest Institute of Textile Technology, 2001,15(2):9-14.
[11] FANGUEIRO R, GONÇALVES P, SOUTINHO F, et al. Moisture management performance of functional yarns based on wool fibres[J]. Indian Journal of Fibre & Textile Research, 2009,34(4):315-320.
[12] LI Y, HOLCOMBE B V. A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics[J]. Textile Research Journal, 1992,62(4):211-217.
doi: 10.1177/004051759206200405
[13] LI Y, ZHONG Xuanluo. An improved mathematical simulation of the coupled diffusion of moisture and heating in wool fabric[J]. Textile Research Journal, 1999,69(10):760-768.
doi: 10.1177/004051759906901010
[14] 陈振宇, 周玲. 织物孔隙率的测定方法及对紫外性能的影响[J]. 现代纺织技术, 2009(4):42-43.
CHEN Zhenyu, ZHOU Ling. Effects of fabric porosity and its effect on UV properties[J]. Advanced Textile Technology, 2009 (4):42-43.
[15] 李芳, 周蓉, 湖生. 四种涤纶机织物过滤性能的对比研究[J]. 山东纺织科技, 2011 (2):4-6.
LI Fang, ZHOU Rong, HU Sheng. Comparative study on filtration performance of four polyester woven fabrics[J]. Shandong Textile Science and Technology, 2011 (2):4-6.
[16] 张新安. 仿毛机织物静态导湿机理探讨[J]. 毛纺科技, 2008,36(4):57-59.
ZHANG Xin'an. Study on the mechanism of wetting mechanism of polyester/viscose wool-like fabric under the static state[J]. Wool Textile Journal, 2008,36(4):57-59.
[1] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[2] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[3] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[4] 余芳 刘成霞. 用蝴蝶结法测试毛织物弯曲性[J]. 纺织学报, 2019, 40(08): 35-39.
[5] 王文聪 范静静 丁超 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[6] 安芳芳 房宽峻 刘秀明 蔡玉青 韩双 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[7] 刘林玉 陈诚毅 王珍玉 祝焕 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[8] 师云龙 钱晓明 梁肖肖 张文欢 邓辉 王立晶 范金土 . 仿人体出汗比例的 Walter 暖体假人皮肤制备[J]. 纺织学报, 2018, 39(05): 103-107.
[9] 陈丽丽. 精纺毛织物缝纫平整度客观评价方法[J]. 纺织学报, 2018, 39(03): 120-125.
[10] 任燕飞 巩继贤 付冉冉 张健飞 王富邦 陶宇庆. 微生物合成纳米灵菌红素及其对羊毛织物抗菌染色[J]. 纺织学报, 2018, 39(02): 91-96.
[11] 陈诚 贾丽霞 张初阳. 毛用防蛀萘醌色素的合成与性能评价[J]. 纺织学报, 2017, 38(10): 70-74.
[12] 李智勇 邵一卿 孙窈 张亮 夏鑫. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10): 7-12.
[13] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[14] 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93.
[15] 韦玉辉 宁琳 吴雄英 丁雪梅. 家用干衣机滚筒烘干方式对羊毛织物性能的影响[J]. 纺织学报, 2017, 38(07): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!