纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 117-123.doi: 10.13475/j.fzxb.20190202207

• 染整与化学品 • 上一篇    下一篇

多功能复合导电毛织物的制备及其性能

王文聪1,2(), 范静静1,2, 丁超1,2, 王鸿博1,2   

  1. 1.江南大学 江苏省功能纺织品工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2019-02-18 修回日期:2019-05-13 出版日期:2019-08-15 发布日期:2019-08-16
  • 作者简介:王文聪(1988—),女,讲师,博士。主要研究方向为纤维素溶解及凝固成形、功能纺织材料。E-mail: wencong828@hotmail.com
  • 基金资助:
    国家自然科学基金项目(51703085);江苏省自然科学基金项目(BK20170189);江苏省博士后科研资助计划项目(2018K108C)

Preparation and properties of multifunctional composite conductive wool fabric

WANG Wencong1,2(), FAN Jingjing1,2, DING Chao1,2, WANG Hongbo1,2   

  1. 1. Jiangsu Engineering Technology Research Center of Functional Textiles, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education,Wuxi, Jiangsu 214122, China
  • Received:2019-02-18 Revised:2019-05-13 Online:2019-08-15 Published:2019-08-16

摘要:

为制备多功能复合导电织物,将羧基化碳纳米管(NWCNTs-COOH)和聚吡咯(PPy)逐层交替沉积在毛织物表面。借助数字万用表测试不同工艺条件下所得织物的电导率,优化复合导电毛织物的制备工艺;并对最优工艺下制备的复合导电毛织物的结构、耐洗涤性、抗菌性和表面润湿性进行研究。结果表明:羧基化碳纳米管分散液质量浓度为1.0 mg/mL,吡咯溶液浓度为1.00 mol/L,六水合三氯化铁溶液浓度为1.00 mol/L,氧化聚合时间为30 min,氧化聚合温度为0 ℃,组装次数为5时,复合导电毛织物的导电性能相对最优,电导率达到110 S/m左右;羊毛表面覆盖有MWCNTs-COOH/PPy多层膜,经10次洗涤后织物电导率下降至98.8 S/m,耐洗性良好;该复合导电毛织物对大肠杆菌和金黄色葡萄球菌具有明显的抑制能力,且疏水性有所提高。

关键词: 羧基化碳纳米管, 聚吡咯, 毛织物, 导电性能, 抗菌性能, 疏水性能

Abstract:

Multifunctional conductive wool fabric was successfully prepared by alternatively depositing carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) and polypyrrole (PPy) on the charged surface of wool fabric. The influence of experimental conditions on the conductivity were determined using digital multimeter, and the structure, wash resistance, antibacterial property and water repellent property of composite conductive wool fabric prepared under the relatively optimal conditions were investigated. The results show that when the concentration of MWCNTs-COOH, PPy and FeCl3·6H2O are 1.0 mg/mL, 1.00 mol/L and 1.00 mol/L, respectively, the reaction time of oxypolymerization is 30 min, the temperature of oxypolymerization is about 0 ℃ and the number of assembly bilayers is 5, composite conductive fabric with the electrical conductivity around 110 S/m exhibits better conductive properties. The surface of wool fabric is covered by MWCNTs-COOH/PPy multilayers. The conductivity can reach 98.8 S/m after washing for 10 cycles, showing that the composite conductive wool fabric has good washing resistance. Besides, the composite fabric possesses a collection of various functions such as antibacterial property and water repellent properties.

Key words: carboxylic multi-walled carbon nanotube, polypyrrole, wool fabric, conductive property, antibacterial property, water repellent property

中图分类号: 

  • TS195.5

图1

MWCNTs-COOH质量浓度对复合导电毛织物电导率的影响"

图2

Py浓度对复合导电毛织物电导率的影响"

图3

FeCl3·6H2O浓度对复合导电毛织物电导率的影响"

图4

氧化聚合时间对复合导电毛织物电导率的影响"

图5

氧化聚合温度对复合导电毛织物电导率的影响"

图6

毛织物及复合导电毛织物的红外光谱"

图7

毛织物原样及不同组装次数复合导电毛织物的扫描电镜照片(×2 000)"

图8

羊毛、MWCNTs-COOH和PPy的组装机制"

图9

洗涤10次后复合导电毛织物的扫描电镜照片(×2 000)"

表1

不同组装次数复合导电毛织物的抑菌带宽度"

组装
次数
抑菌带宽度
大肠杆菌 金黄色葡萄球菌
0 0.00 0.00
1 4.56 6.17
3 7.35 8.51
5 9.07 10.25

图10

组装次数为5的复合导电毛织物抑菌效果"

图11

不同组装次数复合导电织物的表面润湿性"

[1] MAITY S, CHATTERJEE A . Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review[J]. Journal of Industrial Textiles, 2018,47(8):2228-2252.
doi: 10.1177/1528083716670310
[2] HAO T, WANG W, YU D . A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI[J]. Journal of Electronic Materials, 2018,47(7):4108-4115.
doi: 10.1007/s11664-018-6306-6
[3] TIAN M, DU M, QU L , et al. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route[J]. RSC Advance, 2017,68(7):42641-42652.
[4] ZHOU Y, DING X, ZHANG J , et al. Fabrication of conductive fabric as textile electrode for ECG moni-toring[J]. Fibers and Polymers, 2014,15(11):2260-2264.
doi: 10.1007/s12221-014-2260-y
[5] LIU Y, ZHAO X, TUO X . Preparation of polypyrrole coated cotton conductive fabrics[J]. Journal of The Textile Institute, 2016,108(5):1-6.
doi: 10.1080/00405000.2015.1133105
[6] LU M, XIE R, LIU Z , et al. Enhancement in electrical conductive property of polypyrrole-coated cotton fabrics using cationic surfactant[J]. Journal of Applied Polymer Science, 2016,133(32):43601.
[7] XU Q, LI M, YAN P , et al. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2016,29:107-113.
doi: 10.1016/j.orgel.2015.11.007
[8] HAO T, SUN J, WANG W , et al. MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method[J]. Cellulose, 2018,25(7):4031-4041.
doi: 10.1007/s10570-018-1829-9
[9] YANG M, FU C, XIA Z , et al. Conductive and durable CNT-cotton ring spun yarns[J]. Cellulose, 2018,25(7):4239-4249.
doi: 10.1007/s10570-018-1839-7
[10] 董振峰, 朱志国, 王锐 , 等. 碳纳米管/聚合物复合体系阻燃性能的研究进展[J]. 纺织学报, 2009,30(3):136-142.
DONG Zhenfeng, ZHU Zhiguo, WANG Rui , et al. Recent development on flame retardancy of carbon nanotubes polymer composites[J]. Journal of Textile Research, 2009,30(3):136-142.
doi: 10.1177/004051756003000204
[11] 高博, 赵玉真, 张煜星 , 等. 层层组装法制备多功能超疏水性棉织物[J]. 印染, 2017(15):34-37.
GAO Bo, ZHAO Yuzhen, ZHANG Yuxing , et al. Preparation of multifunctional super hydrophobic cotton fabric via layer by layer assembly[J]. China Dyeing & Finishing, 2017(15):34-37.
[12] 崔锦峰, 安进, 裴春娟 , 等. 超疏水导电聚吡咯材料的研究进展[J]. 现代化工, 2013,33(9):36-39.
CUI Jinfeng, AN Jin, PEI Chunjuan , et al. Research progress in superhydrophobic conductive polypyrrole materials[J]. Modern Chemical Industry, 2013,33(9):36-39.
[13] LEE S, KIM B, CHEN S , et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications.[J]. Journal of the American Chemical Society, 2009,131(2):671-679.
doi: 10.1021/ja807059k pmid: 19105687
[14] ZOU L, ZHANG S, LI X , et al. Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shiel-ding[J]. Advanced Materials Interfaces, 2016,3(5):1-6.
[15] XIN Q, SHAH H, NAWAZ A , et al. Antibacterial carbon-based nanomaterials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804838.
doi: 10.1002/adma.202003804 pmid: 33169472
[16] VARESANO A, VINEIS C, ALUIGI A , et al. Antibacterial efficacy of polypyrrole in textile applications[J]. Fibers and Polymers, 2013,14(1):36-42.
doi: 10.1007/s12221-013-0036-4
[17] LI M, WEI Z, JIANG L . Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy[J]. Journal of Materials Chemistry, 2008,18(19):2276-2280.
doi: 10.1039/b800289d
[1] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[2] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[3] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[4] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[5] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[6] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[7] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO / 有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[8] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[9] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[10] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[11] 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31.
[12] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(8): 95-100.
[13] 余芳, 刘成霞. 用蝴蝶结法测试毛织物弯曲性[J]. 纺织学报, 2019, 40(8): 35-39.
[14] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[15] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2 / 氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢明杰;唐佃花;郁崇文. 工艺参数对喷气纱强力的影响[J]. 纺织学报, 2005, 26(1): 49 -51 .
[2] 檀革银;靳向煜;唐守星. 非织造用转基因棉的脱脂工艺及性能研究[J]. 纺织学报, 2004, 25(04): 24 -25 .
[3] 杨菊萍. 高浓度交联型阳离子高分子絮凝剂[J]. 纺织学报, 2005, 26(5): 63 -64 .
[4] 祝志峰;乔志勇. 浆液泡沫的起因与消除[J]. 纺织学报, 2006, 27(7): 86 -89 .
[5] 林建龙;王小北;顾翔. 新型电脑刺绣机挑线机构设计分析[J]. 纺织学报, 2006, 27(12): 105 -108 .
[6] 张强;王悌义. 赫马(Hema)型喷嘴流场测定与分析[J]. 纺织学报, 1995, 16(02): 19 -22 .
[7] 张佩华;潘伯荣;汤振民;邱佩芬. 偏心拉杆式牵拉机构的测试与分析[J]. 纺织学报, 1995, 16(02): 46 -48 .
[8] 李济群. 国产毛 C07型自调匀整装置延迟时间的简约计算式[J]. 纺织学报, 1993, 14(03): 19 -21 .
[9] . 国际化工及石油化工设备展览四月份在京举办[J]. 纺织学报, 1987, 8(02): 55 .
[10] 杨明远;李立风;李繁亭;钱宝钧. 丙烯腈-丝朊接枝共聚纤维中的相分离与互相渗透的网络结构[J]. 纺织学报, 1986, 7(06): 11 -16 .