纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 95-100.doi: 10.13475/j.fzxb.20180601006

• 染整与化学品 • 上一篇    下一篇

等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响

姜珊1, 万爱兰1,2,3(), 缪旭红1,3, 蒋高明1,3, 马丕波1,3, 陈晴1,3   

  1. 1.江南大学 教育部针织技术工程研究中心, 江苏 无锡 214122
    2.纺织纤维及制品教育部重点实验室(武汉纺织大学), 湖北 武汉 430200
    3.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2018-06-01 修回日期:2019-03-11 出版日期:2019-08-15 发布日期:2019-08-16
  • 通讯作者: 万爱兰
  • 作者简介:姜珊(1995—),女。主要研究方向为智能纺织品。

Influence of plasma treatment on electrical conductivity of polypyrrole/polyester composite yarn

JIANG Shan1, WAN Ailan1,2,3(), MIAO Xuhong1,3, JIANG Gaoming1,3, MA Pibo1,3, CHEN Qing1,3   

  1. 1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Textile Fiber Products, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200
    3. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122
  • Received:2018-06-01 Revised:2019-03-11 Online:2019-08-15 Published:2019-08-16
  • Contact: WAN Ailan

摘要:

为提高导电高聚物聚吡咯在涤纶长丝表面的黏附牢度,采用亚真空等离子体处理技术对涤纶表面进行改性处理,再通过原位聚合法制备聚吡咯/涤纶复合导电纱线,考察等离子体处理前后聚吡咯/涤纶复合导电纱线导电性能和耐久性变化。结果表明:利用亚真空等离子体处理产生的高能活性粒子在涤纶表面轰击产生微小凹坑,可有效增加涤纶表面粗糙度,但对涤纶力学性能无显著影响;该处理方式改善了聚吡咯薄膜的连续性、均匀度以及其与涤纶纱线基材的黏附牢度;复合导电纱线的导电性和耐久性均得到明显提高,等离子体处理前后复合导电纱线电导率分别为0.67 和1.16 S/cm。

关键词: 亚真空等离子体, 原位聚合, 复合导电聚吡咯/涤纶纱线, 导电性能, 黏附牢度

Abstract:

In order to improve the surface adhesion fastness of the conductive polymer polypyrrole (PPy) on the polyester (PET) filament, the sub-vacuum plasma treatment technology was used for surface modification of polyester fiber, and the composite conductive PPy/PET yarns were prepared by in-situ polymerization method. The influence of plasma treatment on the electrical conductivity and durability of PPy/PET composite conductive yarns was investigated. The results show that the tiny concave pits appear on the surface of polyester fiber by the high-energy reactive particle bombardment of sub-vacuum plasma processing, which can effectively improve the surface roughness of the polyester fiber without significant influence on the mechanical properties of the substrate. The continuity and evenness of the PPy thin films was achieved by the sub-vacuum plasma treatment. The adhesion between PPy thin film and polyester yarns, the electrical conductivity and durability of composite conductive yarns were improved by the sub-vacuum plasma treatment. The electrical conductivity of composite conductive PPy/PET yarns before and after sub-vacuum plasma treatment is 0.67 and 1.16 S/cm, respectively.

Key words: sub-vacuum plasma, in-situ polymerization, composite conductive polypyrrole/polyester yarn, electrical conductivity, adhesion fastness

中图分类号: 

  • TQ342

表1

试样处理条件参数"

试样
编号
处理条件 试样
编号
处理条件
1# 未处理 9# 原位聚合
2# 220 W、4 min 10# 220 W、4 min+原位聚合
3# 300 W、4 min 11# 300 W、4 min+原位聚合
4# 380 W、4 min 12# 380 W、4 min+原位聚合
5# 460 W、4 min 13# 460 W、4 min+原位聚合
6# 300 W、6 min 14# 300 W、6 min+原位聚合
7# 300 W、8 min 15# 300 W、8 min+原位聚合
8# 300 W、10 min 16# 300 W、10 min+原位聚合

图1

等离子体处理时间对复合导电纱线电导率和质量增加率的影响"

图2

等离子体处理功率对复合导电纱线电导率和质量增加率的影响"

图3

等离子体处理前后涤纶纱和复合导电纱线的扫描电镜照片(×5 000)"

表2

不同处理条件下涤纶纱线的力学性能"

试样
编号
断裂
强力/
cN
断裂
强度/
(cN·tex-1)
断裂
伸长
率/%
试样
编号
断裂
强力/
cN
断裂
强度/
(cN·tex-1)
断裂
伸长
率/%
1# 322.15 38.81 24.62 9# 327.43 39.45 23.21
2# 320.02 38.56 22.65 10# 344.04 41.45 20.48
3# 319.10 38.45 23.54 11# 343.20 41.35 20.81
4# 314.43 37.88 23.25 12# 331.48 39.93 21.16
5# 308.84 37.21 23.18 13# 324.94 39.15 20.09
6# 317.47 38.25 22.37 14# 324.12 39.05 21.29
7# 316.15 38.09 22.74 15# 330.61 39.83 22.95
8# 307.91 37.10 23.48 16# 326.40 39.33 21.56

图4

等离子体处理功率对复合导电纱线耐久性能影响"

图5

等离子体处理时间对复合导电纱线耐久性能影响"

[1] 张晓峰, 李国豪, 胡吉永 , 等. 用于人体上肢运动姿态监测的聚吡咯导电织物的机电性能评价[J]. 中国生物医学工程学报, 2015,34(6):670-676.
ZHANG Xiaofeng, LI Guohao, HU Jiyong , et al. Mechanic-electrical property characterization of PPy-coated conductive woven fabric for human upper limb motion monitoring[J]. Chinese Journal of Biomedical Engineering, 2015,34(6):670-676.
[2] LI Y, CHENG X Y, LEUNG M Y , et al. A flexible strain sensor from polypyrrole-coated fabrics[J]. Synthetic Metals, 2005,155:89-94.
doi: 10.1016/j.synthmet.2005.06.008
[3] CAMPBELL T E, MUNRO B J, WALLACE G G , et al. Can fabric sensors monitor breast motion?[J]. Journal of Biomechanics, 2007,40:3056-3059.
doi: 10.1016/j.jbiomech.2007.01.020 pmid: 17383660
[4] 王婉秦, 于德梅, 解云川 . 聚吡咯及其共聚物的研究进展[J]. 高分子材料科学与工程, 2011,27(7):175-178.
WANG Wanqin, YU Demei, XIE Yunchuan . The development in polypyrrole and its copolymer[J]. Polymer Materials Science & Engineering, 2011,27(7):175-178.
[5] 霍歆彤, 刘玉, 李青 . 聚吡咯/涤纶复合导电织物制备工艺探索[J]. 北京服装学院学报(自然科学版), 2015,35(2):12-15.
HUO Xintong, LIU Yu, LI Qing . Preparation of polypyrrole/polyester conductive composite fabric[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2015,35(2):12-15.
[6] 鞠佳彤, 田琳, 陈莹 , 等. 聚吡咯涤纶导电织物的制备及其表征[J]. 纺织学报, 2013,34(11):28-33.
JU Jiatong, TIAN Lin, CHEN Ying , et al. Preparation and properties of conductive polypyrrole polyester fabric[J]. Journal of Textile Research, 2013,34(11):28-33.
[7] MEHMOOD T, DAI X J, KAYNAK A , et al. Improved bonding and conductivity of polypyrrole on polyester by gaseous plasma treatment[J]. Plasma Processes and Polymers, 2012,9(10):1006-1014.
doi: 10.1002/ppap.201200046
[8] MEHMOOD T, KAYNAK A, DAI X J , et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion[J]. Materials Chemistry and Physics, 2014,143(2):668-675.
doi: 10.1016/j.matchemphys.2013.09.052
[9] WANG J P, XUE P, TAO X M . Strain sensing behavior of electrically conductive fibers under large deforma-tion[J]. Materials Science and Engineering, 2011,528(6):2863-2869.
[10] SALGE J . Plasma-assisted deposition at atmospheric pressure[J]. Surface and Coatings Technology, 1996,80:1-7.
doi: 10.1016/0257-8972(95)02676-2
[11] 贾彩霞, 陈平, 王乾 , 等. 常压空气等离子体对连续纤维的在线改性[J]. 材料研究学报, 2015,29(1):10-16.
JIA Caixia, CHEN Ping, WANG Qian , et al. On-line modification of continuous fibers by atmospheric air plasma[J]. Chinese Journal of Materials Research, 2015,29(1):10-16.
[12] 王辉, 孙岩洲, 方志 , 等. 介质阻挡放电低温等离子体的产生[J]. 印染, 2005,31(19):5-7.
WANG Hui, SUN Yanzhou, FANG Zhi , et al. Generation of non-thermal plasma using dielectric barrier discharge[J]. China Dyeing & Finishing, 2005,31(19):5-7.
[13] 尤庆亮, 甘立新, 孟月东 , 等. 低温等离子体对聚合物表面改性的研究[J]. 化工新型材料, 2004,32(4):10-13.
YOU Qingliang, GAN Lixin, MENG Yuedong , et al. Study on polymer surface modification by low temperature plasma[J]. New Chemical Materials, 2004,32(4):10-13.
[14] RAMELOW U S, MA J H, DARBEAU R . Electrical conductivities of polypyrrole reacted with dopant solu-tion[J]. Material Research Innovation, 2001,5(1):40-49.
doi: 10.1007/s100190100129
[15] 张晓峰, 王浩, 胡圣寅 . 聚吡咯导电机织物的制备及电阻性能表征[J]. 上海纺织科技, 2018,46(4):40-42.
ZHANG Xiaofeng, WANG Hao, HU Shengyin . Preparation and resistance characterization of polypyrrole conductive motor fabric[J]. Shanghai Textile Science & Technology, 2018,46(4):40-42.
[1] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[2] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[3] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[4] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[5] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(8): 117-123.
[6] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[7] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[8] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[9] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[10] 肖渊, 尹博, 李岚馨, 刘欢欢. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019, 40(05): 78-83.
[11] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[12] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[13] 韩潇 洪剑寒 惠林 史韩萍 金丽华. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018, 39(02): 20-25.
[14] 陈莹 王鸿达 李宥宣. 不同溶剂对聚吡咯/涤纶材料抗凝血性能的影响[J]. 纺织学报, 2018, 39(02): 132-137.
[15] 郝鸿飞 刘晓艳. 胆固醇液晶热致变色微胶囊的制备及其性能[J]. 纺织学报, 2017, 38(06): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭秉臣. 毛纺直型精梳机圆梳的梳理速度及梳理效能的分析[J]. 纺织学报, 1984, 5(09): 30 -32 .
[2] 王盛奎. 染织物色深的探讨[J]. 纺织学报, 1998, 19(05): 31 -32 .
[3] 魏静. 翻折领翘势的变化[J]. 纺织学报, 2005, 26(5): 103 -105 .
[4] 李伟锋. 基于RS-485总线的土工膜水力性能测试仪研制[J]. 纺织学报, 2005, 26(1): 107 -109 .
[5] 黄秀宝;梁金茹. 捻度传递长度缠绕纤维与成纱质量[J]. 纺织学报, 1983, 4(11): 5 -11 .
[6] 敖利民;唐雯;郁崇文. 织物表面刺扎程度的测试及评价方法[J]. 纺织学报, 2004, 25(05): 129 -130 .
[7] 王强;范雪荣;陈琦. 壳聚糖改性棉织物染色动力学研究[J]. 纺织学报, 2004, 25(06): 19 -21 .
[8] 王庆江. 梳棉机棉条断头检测装置[J]. 纺织学报, 1988, 9(10): 17 -19 .
[9] 郑来久;刘晶;马东霞. 纤维素纤维超临界CO2染色机理研究[J]. 纺织学报, 2004, 25(02): 11 -13 .
[10] 李红;郑来久. 改性亚麻染色性能的研究[J]. 纺织学报, 2002, 23(06): 10 -11 .