纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 56-61.doi: 10.13475/j.fzxb.20190405906

• 纺织工程 • 上一篇    下一篇

圆形纬编针织物电极导电性能及电阻理论模型构建

张佳慧1,2, 王建萍1,2,3()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学),上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200092
  • 收稿日期:2019-04-23 修回日期:2019-12-14 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 王建萍
  • 作者简介:张佳慧(1994—),女,硕士生。主要研究方向为先进制造。

Electric conduction and resistance theory model of circular weft knitted electrodes

ZHANG Jiahui1,2, WANG Jianping1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology (Donghua University), Ministry of Education, Shanghai 200051, China
    3. Shanghai Institute of International Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2019-04-23 Revised:2019-12-14 Online:2020-03-15 Published:2020-03-27
  • Contact: WANG Jianping

摘要:

为从理论上指导基于纬编针织物电极智能腿套的设计,建立电阻模块理论模型,选用2种导电材料、3种组织结构和4种电极尺寸制作了24种腿套试样,测试其热定形前后腿套电极部位的导电性能,探讨不同因素对织物电极等效电阻的影响,同时建立织物电极等效电阻线性拟合模型。结果表明:不同因素对织物电极导电性能均有显著影响,且原料对导电性能影响最显著;镀银纱织物热稳定性较好,对于需热定形处理的导电织物可选用镀银锦纶纱为原料;建立的电阻模块理论模型可用于定量分析和预测织物电极的等效电阻。

关键词: 针织物电极, 电阻模块, 导电性能, 理论模型, 智能服装

Abstract:

In order to provide theoretical guidance for designing leggings with circular weft-knitted electrodes, based on the loop structure of knitted fabrics, a theoretical model of resistance module was established, with 2 types of conductive materials, 3 knitted structures and 4 electrode sizes, totaling 24 leggings. The leggings were knitted and treated by heat setting to analyze the electric conduction of knitted electrode, for exploring the influence of different factors on the electric conduction of knitted electrodes and establishing a linear fitting resistance model of knitted electrodes. The results show that different factors have significant influence on the conductivity of flexible electrodes, among which conductive material has the most significant influence. Heat setting has little effect on the electric conduction of flexible electrodes knitted by silver plated yarn therefore it can be used as the material for flexible knitted electrodes that need to be heat-set. The theoretical model of resistance module can be used to analyze and predict quantitatively the resistance of the knitted electrodes.

Key words: knitted electrode, resistance module, electric conduction, theoretical model, intelligent garment

中图分类号: 

  • TS941.19

表1

纱线基本信息"

纱线
编号
纱线
类型
单纱线
密度/dtex
生产
厂商
纤维直径/
μm
捻度/
(捻·m-1)
A 镀银锦
纶纱
222 青岛志远翔宇功能
性面料有限公司
27.6 570
B 2合股不锈
钢纤维纱
111 东莞盛芯特殊绳带
有限公司
14.5 230
C 2合股
锦纶纱
78 东方桂冠针纺织品
有限公司
24.0 610
D 锦纶/氨纶
双包纱
44/44/
44
上海利以德特种丝
有限公司
15.0 900(S)
1 160(Z)
E 锦纶/氨纶
双包纱
311/
44/44
上海利以德特种丝
有限公司
15.0 1 080(S)
1 250(Z)

图1

组织结构"

表2

纬编针织物电极工艺参数"

纱线
编号
组织
结构
横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
A 平纹 58 36
1×1抽条 64 38
1×2抽条 65 40
B 平纹 53 29
1×1抽条 53 33
1×2抽条 56 36

表3

导电纱线性能测试结果"

纱线
编号
复丝
根数
伸长率/
%
强力/
cN
电阻拟合
情况
电阻率/
(Ω·m)
A 48 44.5 869.8 y=5.036 62x+
0.197 57
1.40×10-5
B 100 1.0 2 149.0 y=0.366 47x+
0.249 1
1.21×10-6

图2

线圈及等效电阻理论模型"

表4

织物电极的电阻理论K值"

纵行数×横列数 KpH KpZ K1H K1Z K2H K2Z
12×24 0.686 5 3.122 9 0.414 4 6.000 0 0.268 9 9.250 0
16×32 0.701 1 3.200 6 0.402 3 5.875 0 0.218 9 7.400 0
20×40 0.732 9 3.774 4 0.421 8 6.100 0 0.330 5 9.838 1
24×48 0.760 0 3.387 7 0.440 6 6.383 3 0.287 0 10.270 2

图3

织物电极横向电阻"

图4

织物电极纵向电阻"

表5

织物电极横向与纵向电阻主体间效应检验"

横向电阻F 纵向电阻F
原料 3 600.039* 1 713.532*
尺寸 72.749* 125.455*
组织 199.558* 603.008*
原料×尺寸 20.525* 46.996*
原料×组织 31.619* 1 212.312*
尺寸×组织 5.886* 60.557*
原料×尺寸×组织 2.977* 69.926*

表6

原料对织物电极横向与纵向电阻的估算边际均值"

原料 横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
A 0.971 0.007 1.371 0.018
B 0.402 0.007 2.530 0.018

表7

尺寸对织物电极横向与纵向电阻的估算边际均值"

纵行数×
横列数
横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
12×24 0.625 0.009 1.638 0.025
16×32 0.617 0.009 1.724 0.025
20×40 0.717 0.009 2.158 0.025
24×48 0.786 0.009 2.266 0.025

表8

组织对织物电极横向与纵向电阻的估算边际均值"

组织 横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
平纹 0.819 0.008 2.629 0.024
1×1抽条 0.603 0.008 1.582 0.024
1×2抽条 0.637 0.008 1.629 0.024

表9

织物电极横向、纵向电阻实测值与理论K值偏相关系数"

组织 偏相关系数
横向电阻 纵向电阻
平纹 0.931* 0.658
1×1抽条 0.802* 0.901*
1×2抽条 0.781* 0.711

表10

织物电极横向电阻值的回归模型"

回归方程 调整R2
Yp=0.140r+3.030KpH-1.743 0.986
Y1=0.101r+5.942K1H-2.164 0.920
Y2=0.124r+1.111K2H-0.005 0.980
[1] SONG H, LEE J, KANG H, et al. Textile electrodes of jacquard woven fabrics for biosignal measurement[J]. Journal of The Textile Institute, 2010,101(8):758-770.
doi: 10.1080/00405000903442086
[2] 刘焘, 邹奉元. 涂碳纤维导电针织物的结构设计及其传感性能[J]. 纺织学报, 2014,35(9):31-35.
LIU Tao, ZOU Fengyuan. Structural design and sening performance of conductive knitted fabrics of carbon coated fibers[J]. Journal of Textile Research, 2014,35(9):31-35.
[3] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014,5(2):1-8.
[4] 蔡倩文. 基于导电纤维针织物的柔性传感器呼吸监测研究[D]. 杭州:浙江理工大学, 2015: 18-32.
CAI Qianwen. Based on the flexible sensor of conductive fiber knitted fabric respiratory monitoring research[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 18-32.
[5] 谢娟. 针织物传感器双向延伸电-力学性能及肢体动作监测研究[D]. 上海:东华大学, 2015: 12-17.
XIE Juan. Research into electro-mechanical properties of knitted sensor under strip biaxial elongation and application in monitoring body movements[D]. Shanghai: Donghua University, 2015: 12-17.
[6] VOJTECH L, BORTEL R, NERUDA M, et al. Wearable textile electrodes for ECG measurement[J]. Advances in Electrical & Electronic Engineering, 2013,11(5):410-414.
[7] 王金凤, 龙海如. 线圈转移对导电弹性针织柔性传感器的电-力学性能影响[J]. 纺织学报, 2013,34(7):62-68.
WANG Jinfeng, LONG Hairu. Effect of loop transfer on electro-mechanical properties of conductive elastic wearable knitted sensors[J]. Journal of Textile Research, 2013,34(7):62-68.
[8] 蔡倩文, 王金凤, 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016,37(6):48-53.
CAI Qianwen, WANG Jinfeng, CHEN Weilai. Structures and electrical properties of weft-knitted flexible sensors[J]. Journal of Textile Research, 2016,37(6):48-53.
[9] 陈斌, 李娜娜, 蔡璐, 等. 导电针织物结构设计及性能研究[J]. 针织工业, 2015(6):23-25.
CHEN Bin, LI Nana, CAI Lu, et al. Structure design of conductive fiber knitted fabric and its property analy-sis[J]. Knitting Industries, 2015(6):23-25.
[10] SEYEDIN S, MORADI S, SINGH C, et al. Continuous production of stretchable conductive multi-filaments in kilometer scale enables facile knitting of wearable strain sensing textiles[J]. Applied Materials Today, 2018,11:255-263.
[11] 蔡倩文, 陈慰来, 王金凤. 洗涤及热定型对柔性传感器导电性能的影响[J]. 现代纺织技术, 2017,25(1):23-27,55.
CAI Qianwen, CHEN Weilai, WANG Jinfeng. Effect of washing and heat setting on electric conduction of flexible sensors[J]. Advanced Textile Technology, 2017,25(1):23-27,55.
[1] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[2] 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149.
[3] 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178.
[4] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[5] 白赫, 钱晓明, 范金土, 钱幺, 刘永胜, 王小波. 纤维质多孔材料中纤维间接触点数量的理论模型[J]. 纺织学报, 2019, 40(12): 21-26.
[6] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[7] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[8] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
[9] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[10] 肖渊, 尹博, 李岚馨, 刘欢欢. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019, 40(05): 78-83.
[11] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[12] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[13] 王云燕 陈慰来 王金凤. 碳黑导电纤维的导电性能[J]. 纺织学报, 2017, 38(05): 19-24.
[14] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[15] 蔡倩文 王金凤 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016, 37(06): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!